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Abstract

A single unifying algorithm has been developed to systematize the collection of compact
Daubechies wavelets. This collection comprises all classes of real and complex orthogonal and
biorthogonal wavelets with the maximal number K of vanishing moments for their finite length.
Named and indexed families of wavelet filters were generated by spectral factorization of a
product filter in which the optimal subset of roots was selected by a defining criterion within
a combinatorial search of subsets meeting required constraints. Several new families have been
defined some of which were demonstrated to be equivalent to families with roots selected solely
by geometric criteria that do not require an optimizing search. Extensive experimental results
are tabulated for 1 ≤ K ≤ 24 for each of the families and most of the filter characteristics defined
in both time and frequency domains. For those families requiring optimization, a conjecture for
K > 24 is provided for a search pattern that reduces the order of the computational complexity
but permits attainment of the desired optimum.
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0 List of Symbols

D, L in upper case calligraphic font for Daubechies parameter and Lagrange parameter;
N , M , K, R in upper case math font for filter bank related parameters;
d, p in lower case math font for degree and parity or power parameters;
n, t, z in lower case math font for independent variables in discrete time, continous time, and

complex z-domain;
z = reiα for complex z with radius r, imaginary i, angle α;
α, ω in lower case Greek font for angle and frequency in radians;
P, A, S, F , G, H in upper case calligraphic font for polynomials (usually expressed as P(z) in

terms of roots z);
p, a, s, f , g, h in lower case bold font for vectors of coefficients;
A, S, F, G, H in upper case bold font for matrices of coefficients;
i, j, k, m, n in lower case math font for running indices in sums or products, or for subscript

indices in vectors or matrices;
ncq, nrd with number n in lower case math font and superscripts in roman font;
Np, Na, Ns, n

cq
p , ncq

a , ncq
s various numbers with subscripts p, a, and s for product, analysis, and

synthesis filters;
γ, η, φ, ψ, τ , ε, ϕ, ρ in lower case Greek fonts for gamma, eta, phi, psi, tau, varepsilon, varphi,

rho;
ς, υ, ν, ε in lower case Greek bold font for varsigma, upsilon, nu, varepsilon;
Φ, Ψ, Υ in upper case Greek fonts for Phi, Psi, Upsilon;
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1 Introduction

Numerous discussions of both the general theory [19, 40] and specific parameterizations [29, 54,
53, 22, 34, 38] for Daubechies wavelets have been published since her seminal discovery of compact
orthogonal and biorthogonal wavelets [5, 4, 7]. These wavelets, which have the maximal number
of vanishing moments for their minimal finite length, can be implemented as discrete filters that
are iterated or auto-convolved to generate approximations of the continuous functions. Prior to
development of the angular parameterization methods, the Daubechies wavelets were originally
designed by spectral factorization of a polynomial (as summarized in her book [6]). This approach
has been criticized [54, 38] for the numerical instabilities associated with finding the roots of a
polynomial. Yet the angular parameterization methods have not demonstrated any results for
much higher order wavelets where the numerical instabilities of the spectral factorization methods
begin to occur.
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As discussed by Taswell in [47], the advantages and disadvantages of the various approaches
should be recognized. The practical utility of each method should be evaluated in terms of the
class of wavelet filters and range of filter lengths N for which the method is valid, the possible
combinations of desired filter characteristics for which a search can be performed through the
method’s parameterized space, and the computational complexity of that search for the desired
filter. In pursuit of this goal, this article reports a comprehensive evaluation for all classes of
Daubechies wavelets, including both real and complex and both orthogonal and biorthogonal, that
are computable by spectral factorization.

Both Shensa [37] and Ansari et al. [3] related Daubechies filters to Lagrange filters, while Akansu
et al. [2] related them to binomial filters. Shen and Strang [36] discussed the computation of the
Daubechies filter roots as the roots of a binomial polynomial, while Goodman et al. [15] considered
them as the roots of a Laurent polynomial. More recently, Temme [51] described the asymptotics
of the roots in terms of a representation of the incomplete beta function. Other authors have
presented Daubechies wavelets generated by complex filters [20, 23] or by real filters optimized for
a particular criterion [9, 10, 27, 26, 11].

However, a systematic treatment collecting and evaluating all of the Daubechies real and com-
plex orthogonal and biorthogonal wavelets constructed with a single unifying computational algo-
rithm has not yet appeared in the literature. Such an effort was begun by Taswell [45] focusing on
wavelets with varying degrees of asymmetry or symmetry that can be derived by spectral factor-
ization of the Daubechies polynomial. Significant advantages of the spectral factorization approach
include its generalizability to many different classes and types of wavelets, its suitability for easily
interpretable visual displays, and thus its practicality in pedagogy.

Compact asymmetric and symmetric wavelets include the original orthogonal “extremal phase”
and “least asymmetric” families as well as the biorthogonal “spline” and “spline variations” fami-
lies described by Daubechies [5, 4, 7, 6]. As introduced in the brief report [45], these real families
can be extended and systematized to include complex families with a single generalized flexible
yet automated algorithm that permits consistent selection of alternative choices and the identi-
fication of filters with optimized parameters. As further developed in a subsequent report [50],
these parameters now include phase nonlinearity, time-domain regularity, frequency-domain selec-
tivity, and time-frequency uncertainty, but can be readily extended to include other parameters as
optimization criteria.

Table 1 lists the named filters in the systematized collection of Daubechies wavelets reported
here. For the purposes of this collection, a Daubechies wavelet is considered any orthogonal spectral
factor with maximal number of vanishing moments for minimal number of filter coefficients, and
any pair of biorthogonal spectral factors such that the sum of the numbers of vanishing moments
and filter coefficients for the pair of factors is maximal and minimal, respectively. In essence, the
systematized collection comprises all possible spectral factors obtained from either the Lagrange or
Daubechies polynomials.

Analytically, both of these polynomials should yield the same roots for spectral factorization.
However, numerically with conventional root-finding algorithms, their performance differs signifi-
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cantly at higher orders with the Daubechies polynomial outperforming the Lagrange polynomial
(Section 3.1). The main collection includes families of lowpass scalet filters as the spectral fac-
tors of the product filters. The highpass wavelet filters are then computed from the scalet filters.
Sequences of filters derived from spectral factors of products of increasing order include real and
complex, orthogonal and biorthogonal, least and most asymmetric, least and most symmetric,
symmetric, spline, least uncertain, most selective, most regular, and balanced regular families.

In all but certain cases that do not require an optimization, a combinatorial search algorithm
incorporating a binomial subset selection [43, 45] is used to choose the spectral factors (Section 2.4)
satisfying the required objective criterion defined for each family. Families have been named ac-
cording to the defining criterion and indexed according to the number K of zeros at z = −1.
An explicit composite conformal mapping incorporating an affine transformation and an inverse
Joukowski transformation is used to compute the polynomial roots for the spectral factors (Sec-
tion 2.1.3). Computational algorithms for the generation of the filter coefficients (Section 2.2)
and evaluation of the filter parameters (Section 2.3) are presented together with detailed examples
demonstrating the methods.

In the filter design process, numerical estimates of filter parameters computed from either filter
roots or filter coefficients are used as selection criteria in the search for the spectral factors. However,
all empirical filter parameters are evaluated for each optimized filter to determine its performance
on criteria other than the selection criterion. Various numerical properties evaluated experimentally
for the filters and associated filter banks include those described in the methods [44, 49, 48] for
specification, evaluation, and reproducibility of wavelet transform algorithms. Section 3 presents
results comparing the various filter families. Section 4 provides a conjecture regarding searches
for optimized Daubechies wavelets of higher order K than the range of 1 ≤ K ≤ 24 reported in
Tables 3–10.

2 Methods

2.1 Computation of Filter Roots

2.1.1 Symmetric Positive Laurent Polynomials

Filter roots for Daubechies scalets and wavelets can be computed by spectral factorization of
product filters P(z) taken to be either the Lagrange polynomials (2.1.2) or the Daubechies poly-
nomials (2.1.3), denoted PL(z) and PD(z) respectively, as different representations (with distinct
parameterizations and computational algorithms) for the same symmetric positive Laurent polyno-
mials. When used as product polynomials in spectral factorization, they can be factored into either
orthogonal “square root” factors or other biorthogonal analysis and synthesis factors. When using
parameters D for PD(z) and L = D + 1 for PL(z), finding the zeros of these polynomials should
analytically yield the same sets of roots. However, results will differ numerically because of the dif-
ferent computational algorithms. As suggested by the author’s own unpublished experiments and
as confirmed by the comprehensive experiments of Goodman et al. [15], computing the eigenvalues
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of the companion matrix provides the best performing conventional method1 for finding the zeros
of the Laurent polynomials considered here. Press et al. [30, pg 375] provide a concise summary of
the companion matrix eigenvalue method for finding zeros of polynomials.

When used for spectral factorization, the product filter polynomials can be factored into

P(z) = A(z)S(z) (1)

with analysis A(z) and synthesis S(z) filter polynomials. In order to be used in the design of
orthogonal perfect reconstructing filter banks (PRFB), the product filters P(z) must satisfy

P(z) = A(z)A(z−1) (2)

as autocorrelation filters, and

P(z) + P(−z) = 2 (3)

as halfband filters.
Converting from z notation to ω notation, express z = reiω with magnitude r = |z| and angle

ω ∈ (−π, π]. Let P(ω) denote P(z) restricted to the unit circle r = 1. Then P(z) is a halfband
autocorrelation filter positive on the unit circle if

P(ω) = |A(ω)|2 ≥ 0 (4)

and A(ω) is an orthogonal filter if

|A(ω)|2 + |A(ω + π)|2 = 2. (5)

The Féjer-Riesz Theorem ([28, pg 231] or [35, pg 117]) guarantees the existence of the “square
root” factor A(ω) for positive P(ω) a trigonometric polynomial.

2.1.2 Lagrange Polynomials

Lagrange polynomials PL can be used in iterative subdivision schemes to perform exact inter-
polation [8, 37, 3, 16]. They satisfy the autocorrelation and halfband conditions. Express a family
of even-symmetric polynomials indexed by the integer parameter L ≥ 1 in the form

PL(z) = 1 +
L∑

n=1

pL[2n− 1](z−2n+1 + z2n−1) (6)

with odd-length 4L − 1, real even-symmetric coefficients pL[n] = pL[−n] and pL[2n] = 0 for n =
±1, . . . ,±L, and finite support [−2L + 1, 2L − 1]. Then PL(z) has L unique coefficients cL[i] =
pL[2i− 1] for i = 1, 2, . . . ,L.

1Conventional methods refer to those that are well developed, widely available, and broadly applicable. This
definition excludes the asymptotic methods of Temme [51] for high order Daubechies polynomials.
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According to Shensa [37], when the coefficients cL[i] are computed as

cL[i] =

∏
j 6=i(j − 1/2)∏

j 6=i(j − i)
(7)

for j ∈ [−L + 1, . . . ,L − 1,L], the resulting Lagrange polynomial PL(z), as a positive symmetric
Laurent polynomial of degree d2 = 2L − 1, interpolates exactly all regular polynomials of degree
d ≤ 2L − 1. This exact interpolation requires that the polynomial PL(z) be used as a halfband
filter upscaling by rate R = 2 with filter normalization such that pL[0] = 1 and

∑
n pL[n] = 2.

Since the product PL(z) has a zero at z = −1 of multiplicity 2L, the other 2(L−1) simple zeros
can be collected in the quotient

QL(z) =
PL(z)

(z + 1)L(z−1 + 1)L . (8)

This quotient QL(z) is also a symmetric Laurent polynomial [15] which can be split into the “square
root” factors RL(z) and RL(z−1) with |RL(ω)|2 = QL(ω). Thus, factorize

PL(z) = (z + 1)L(z−1 + 1)LQL(z)

= (z + 1)LRL(z)(z−1 + 1)LRL(z−1)

= AL(z)AL(z−1)

neglecting normalization constants. The product filter PL(z) has thus been split into

AL(z) = (z + 1)LRL(z) (9)

SL(z) = AL(z−1) (10)

as the factors for the analysis and synthesis filters
For the Lagrange product polynomial PL(z) with 2L zeros at z = −1 and length 4L − 1

coefficients, this square root factorization generates the Daubechies analysis factor AL(z) with L
zeros at z = −1 and length 2L coefficients. When expressed in regular polynomial form, the
Lagrange polynomial can be factored as

PL(z) = (z + 1)2L
ncq∏
i=1

U(z; zi)
nrd∏
j=1

V(z; rj) (11)

U(z; zi) = (z − zi)(z − z−1
i )(z − z̄i)(z − z̄−1

i ) (12)

V(z; rj) = (z − rj)(z − r−1
j ) (13)

where zi and rj are complex and real roots, and ncq = b(L − 1)/2c and nrd = (L − 1) mod 2 are
the numbers of complex quadruplets U(z; zi) and real duplets V(z; rj), respectively. When used
as a filter with impulse response pL[n] and frequency response PL(ω), call it the Lagrange Real
Nonorthogonal Symmetric Interpolating or LRNSI(N ;K; d) filter (Table 1) with parameters for
length N = 4L − 1, number K = 2L of zeros at z = −1, and regular degree d = 2L − 1 of
polynomials for which interpolation should be exact.
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To compute the roots of PL(z) numerically, the companion matrix eigenvalue method (Sec-
tion 2.1.1) can be used, and then those roots zk ≈ −1 can be replaced with zk = −1. This
substitution can be accomplished using either one of two methods: 1) given an error tolerance ε,
subject all roots to the test |zk + 1| < ε and replace those roots that pass the test, or 2) given the
parameter L for the polynomial PL(z), sort all roots in increasing order of |zk + 1| and replace the
first 2L roots.

2.1.3 Daubechies Polynomials

The family of Daubechies polynomials PD(z) indexed by integer parameter D ≥ 0 can be
factored in a manner analogous to the Lagrange polynomials PL(z). However, unlike the Lagrange
coefficients pL[n], the Daubechies coefficients pD[n] cannot be computed explicitly, but instead must
be computed from the roots. Express the Daubechies product polynomial PD(z) in the form

PD(z) = (z + 1)2(D+1)QD(z) (14)

with the quotient polynomial QD(z) a Laurent polynomial of degree d2 = D with 2D roots. Thus,
PD(z) has 4D + 2 roots from which the 4D + 3 coefficients can be computed.

Consider mappings x → y → z between three planes in the complex variables x, y, and z.
Use the x plane to find the roots of the conditioned polynomial CD(x), map to the y plane for the
roots of the binomial polymial BD(y), and map again to the z plane for the roots of the quotient
polynomial QD(z). All three polynomials CD(x), BD(y), and QD(z) will be considered related forms
of the product form PD(z) called the conditioned, binomial, and quotient forms, respectively.

The quotient form QD(z) derives from division of the product form PD(z) by all of its roots
at z = −1 as explained in Section 2.1.2 for the Lagrange polynomials. The binomial form ([6,
Eq. 6.1.12], [36, Eq. 1], [15, Eq. 1.7])

BD(y) =
D∑

i=0

(D + i

i

)
yi (15)

derives from the binomial series for (1 − y)−(D+1) truncated at D + 1 terms. To improve the
numerical conditioning of the root finding problem for the roots yi of BD(y), Shen and Strang [36]
recommend the change of variables x = γy with γ = 4, while Goodman et al. [15] recommend the
change of variables x = 1/y. Incorporating both transformations with x = 1/(γy), then

BD(y) =
D∑

i=0

(D + i

i

)
yi

= (γy)D
D∑

i=0

γ−i

(D + i

i

)
(γy)i−D

= x−DCD(x)
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yields the conditioned form

CD(x) =
D∑

i=0

γ−i

(D + i

i

)
xD−i. (16)

Now obtain the D roots xi of CD(x) by computing the eigenvalues of the companion matrix. Then
the D roots yi of BD(y) can be calculated simply as yi = 1/(γxi).

With another change of variables z + z−1 = 2 − 4y as used by Daubechies [5, 6], map the
binomial BD(y), a regular polynomial with D roots, to the quotient QD(z), a Laurent polynomial
with 2D roots. Given the Joukowski transformations [24, vol 1, pg 197, 223]

w = f(z) = (z + z−1)/2 (17)

z = f−1(w) = w ±
√
w2 − 1 (18)

and the affine transformations

y = g(w) = (1 − w)/2 (19)

w = g−1(y) = 1 − 2y, (20)

the composite mappings2 yield the explicit solutions

y = g(f(z)) = (1 − (z + z−1)/2)/2 (21)

z = f−1(g−1(y)) = 1 − 2y ±
√

(1 − 2y)2 − 1. (22)

The last equation z = f−1(g−1(y)) yields a doubly-valued solution with the reciprocal pair {z, z−1}.
When the pairs are regrouped as complex quadruplets {z, z−1, z̄, z̄−1} and real duplets {r, r−1} and
the polynomial expressed in regular form, PD(z) can be factored as

PD(z) = (z + 1)2(D+1)
ncq∏
i=1

U(z; zi)
nrd∏
j=1

V(z; rj) (23)

where ncq = bD/2c and nrd = D mod 2 using notation analogous to that for the factorization of
PL(z) in Section 2.1.2. When used as a filter with impulse response pD[n] and frequency response
PD(ω), call it the Daubechies Real Nonorthogonal Symmetric Interpolating or DRNSI(N ;K; d)
filter (Table 1) with parameters for length N = 4D + 3, number K = 2D + 2 of zeros at z = −1,
and regular degree d = 2D + 1 of polynomials for which interpolation should be exact.

2.2 Generation of Filter Coefficients

2.2.1 Discrete Impulse Response

Given the roots zk of a degree d polynomial

F(z) =
d∏

k=1

(z − zk) (24)

2Unlike other sections where f and g denote filters, here f and g denote functions that are conformal maps in the
complex domain.
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intended for use as a filter, the coefficients f ≡ f [n] ≡ fn can be computed with an iterated
convolution of factors of degree c. Express the polynomial as the product

F(z) =

(
d∏

k=Cc+1

(z − zk)

)
C−1∏
i=0

(
ic+c∏

k=ic+1

(z − zk)

)
(25)

of C = bd/cc factors of degree c for roots {z1, . . . , zCc} and an additional factor of degree b =
d mod c for roots {zCc+1, . . . , zd}. The additional factor is required only if d is not divisible by c.
An actual algorithm can be implemented recursively [46]. When c = 1 with iterated convolution of
linear factors, this algorithm reduces to one equivalent to Horner’s method [17, pg 104].

A complete specification also requires fixing the order of the roots in the recursion. For example,
if there is a factor of degree b in addition to those of degree c, its placement in the sequence must
be determined by some specified order. Choices of c studied here include c = 4 with roots grouped
by conjugate reciprocal quadruplets, c = 2 with roots paired as conjugates or reciprocals, and the
conventional c = 1. Sort orders investigated include both increasing and decreasing absolute values
as well as the Edrei-Leja order [12, 21]. The latter is defined by choosing

z1 = argmax
zi

|zi| (26)

for the first root k = 1, and then

zk = argmax
zi

k−1∏
j=1

|zi − zj | (27)

for the subsequent roots k = 2, . . . , d. See [31, 32, 18] for other applications and discussion of the
Edrei-Leja order.

Finally, the scaling of the coefficients must be fixed. Assume that an arbitrary filter g of length
N = d+1 coefficients has been computed from d roots of a polynomial. Alternatively, assume that
an arbitrary N × M filter bank G ≡ [g0, . . . ,gM−1] has been given with a lowpass filter g0 such
that

∑
n g0[n] 6= 0. Then given a normalization constant η for the desired F to be obtained from

the given G, compute the η-normalized F with

fm =

(
η/

N−1∑
n=0

g0[n]

)
gm (28)

for m = 0, 1, . . . ,M − 1 which yields the desired constant η =
∑

n f0[n] as coefficient sum for the
lowpass filter f0.

2.2.2 Continuous Impulse Response

Given an η-normalized N × 2 filter bank F, for notational convenience in this section, assume
that f0 ≡ f is a lowpass scalet and f1 ≡ h is a highpass wavelet with the relation between f
and h defined in Section 2.2.3. Then the coefficients f and h themselves constitute the discrete
impulse responses for these FIR filters. Iterative interpolation with upscaling approximation yields
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estimates of the continuous impulse responses for the scalet and wavelet functions corresponding
to the scalet and wavelet filters. For the iterates {f (j)[n]|j = 0, 1, 2, . . . } of the scalet filter f [n], let
f (0)[n] = f [n] be the initial discrete impulse response and let

f (j+1)[n] =
N−1∑
k=0

f [k]f (j)[n− 2k] (29)

determine the sequential estimates f (j) of the continous impulse response approximating the corre-
sponding scalet function

φ(t) =
N−1∑
k=0

f [k]φ(2t− k) (30)

defined by an implicit two-scale equation relating φ to itself. Analogously, for the iterates {h(j)[n]|j =
0, 1, 2, . . . } of the wavelet filter h[n], let h(0)[n] = h[n] be the initial discrete impulse response and
let

h(j+1)[n] =
N−1∑
k=0

h[k]f (j)[n− 2k] (31)

determine the sequential estimates h(j) of the continous impulse response approximating the cor-
responding wavelet function

ψ(t) =
N−1∑
k=0

h[k]φ(2t− k) (32)

defined by an explicit two-scale equation relating ψ to φ. After J iterations, obtain the approxi-
mations φ(tn) ≈ f (J) ≡ f (J)[n] and ψ(tn) ≈ h(J) ≡ h(J)[n] with discrete samples indexed by n at
continuous times tn = n2−J−1.

2.2.3 Reconstructing Filter Banks

Quadrature mirror filter (QMF) and conjugate quadrature filter (CQF) banks were introduced
by Esteban and Galand [13] and Smith and Barnwell [39], respectively. Different definitions with
distinct conventions for sign, phase, and norm have been used for QMF and CQF banks by various
authors in their software, papers, and books [6, 1, 52, 14, 41]. However, these filter bank conventions
can be established using clearly specified principles. The primary guiding principles for the choices
adopted here include: norm by symmetric distribution of normalization constants between analysis
and synthesis filters, phase for the analysis lowpass filter by minimaxity of group delay (Section 2.4),
and sign for the analysis highpass filter by positivity of sign (odd parity) in the definition of the
CQF as the paraconjugate of the QMF.

To insure perfect reconstruction in 2-band filter banks with a symmetric distribution of nor-
malization constants between both analysis and synthesis filters, we require η =

√
2. Thus, given

the
√

2-normalized lowpass filter f , let the corresponding highpass QMF

g = qmf(f , p) (33)
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with parity p ∈ {0, 1} be defined as

gn = (−1)n+1+pfn (34)

for n = 0, . . . , N − 1. With this notation and convention, then even parity p = 0 negates even-
indexed coefficients f [2i] while odd parity p = 1 negates odd-indexed coefficients f [2i+1]. Choosing
p = 1 or p = 0 corresponds to a definition of a QMF in the z domain for which given H(z), the QMF
is either +H(−z) or −H(−z), respectively. These alternative definitions imply negating coefficients
of either odd or even powers of z. Thus, the definitions with either odd or even parity for p can
also be designated the definitions with either positive or negative signs for H, respectively. Taking
f and g as column vectors, the QMF analysis and synthesis banks

A = [a0,a1] = [f ,g] (35)

S = [s0, s1] = [f ,−g] (36)

can then be constructed with a0 and s0 the analysis and synthesis lowpass band filters, and a1

and s1 the analysis and synthesis highpass band filters. However, a pair of analysis and synthesis
filter banks A and S constructed in this manner does not yield a perfect reconstructing filter bank
(PRFB) system.

Analogously, given the
√

2-normalized lowpass filter f , let the corresponding highpass CQF be
defined as the paraconjugate of the highpass QMF. Thus,

h = cqf(f , p) ≡ [qmf(f , p)]P (37)

with the CQF analysis and synthesis banks constructed as

A = [a0,a1] = [f ,h] (38)

S = [s0, s1] = [fP,hP] = AP (39)

which does yield a PRFB system.3 Both the non-reconstructing QMFB system and the perfect
reconstructing CQFB system can be built from a single orthogonal filter. However, the QMFB
and CQFB systems yield, respectively, nonorthogonal and orthogonal filter banks. A perfect recon-
structing system can also be built from two biorthogonal filters to yield a biorthogonal filter bank.
Given biorthogonal lowpass filters a of length Na and s of length Ns from spectral factorization of
a product p, then let N = max(Na, Ns) and q = N mod 2. Construct the analysis and synthesis
banks with column vector zero padding as

A = [a0 | a1] =

[
a qmf(s, 1 − p)

0N+q−Na 0N+q−Ns

]
(40)

S = [s0 | s1] =




0q 0q

s qmf(a, p)
0N−Ns 0N−Na


 (41)

3Let XT and XH ≡ X̄T denote, respectively, the usual transpose and Hermitian (or conjugate transpose), while
XR ≡ JX and XP ≡ JX̄ denote, respectively, the reverse and paraconjugate (or conjugate reverse) with counter-
identity J.
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which yields a biorthogonal PRFB system.

2.3 Evaluation of Filter Parameters

2.3.1 Coefficient and Root Errors

Given a degree d polynomial with corresponding roots zk and coefficients fn,

F(z) =
d∏

k=1

(z − zk) =
d∑

n=0

fnz
n (42)

we need a measure of the accuracy of the coefficient and root representations relative to each other.
If we assume that the coefficients are given as exact, then we can compute the error of the roots
by a test on the roots or by reconstruction of the coefficients from the roots.

Temme [51] proposed tests of the relations

− fd−1 = fd

d∑
k=1

zk (43)

(−1)df0 = fd

d∏
k=1

zk (44)

in order to avoid errors introduced by any instabilities in the reconstruction of the coefficients.
Specify the sort order of the roots and reexpress these relations as the sorted roots error

sre(F) = max{|fd−1 + fd

d∑
k=1

zk|, |(−1)df0 − fd

d∏
k=1

zk|} (45)

defined as the maximum of the two absolute values.
Goodman et al. [15, Eq. 3.3] used an `2 norm on the relative error values of the coefficients.

However, to account for coefficients that are possibly near zero, it is necessary to use mixed error
values of the coefficients. Thus, using the more general `p norm with the mixed error values, this
reconstructed coefficient error can be expressed as

rce(F ; p) =

[
d∑

n=0

(
|fn − f̂n|
|fn| + 1

)p]1/p

(46)

where f̂n are the coefficients reconstructed from the roots zk.
As filter parameters characterizing the relation between the set of coefficients and roots, we can

report both sre(F) and rce(F) errors individually. Alternatively, denote the maximum of the pair
of error values as a more “conservative” parameter estimating the coefficients and roots error

cre(F ; p) = max{rce(F ; p), sre(F)} (47)

which would then reflect a numerical instability in the conversion from either root or coefficient
domain to the other. All values reported here for both rce(F ; p) and cre(F ; p) were computed with
p = 1. As a consequence, rce(F ; p) and cre(F ; p) are denoted simply as rce(F) and cre(F).
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2.3.2 M th-Band Interpolation Error

Define an M th-band interpolation filter as a lowpass filter f such that the coefficients f [n]
and peak magnitude coefficient f [τ ] at time index n = τ satisfy one of the three alternative sum
conditions

∑
n

f [n] =




M if f [τ ] = 1
M1/2 if f [τ ] = M−1/2

1 if f [τ ] = M−1

(48)

together with the following zero constraint

f [τ ± iM ] = 0 (49)

for i = {1, 2, 3, . . . } sufficient to cover the entire length of the filter. Exact interpolation requires
the filter to be normalized according to the first of the three sum conditions.

Given this definition for an M th-band interpolation filter f , we can numerically test f for its
M th-band interpolation error εi with the function mie(f) according to the following sequence of
definitions:

τ = argmax
n

|f [n]| (50)

v = argmin
y

|y − f [τ ]| : y ∈ {1,M−1/2,M−1} (51)

εi = mie(f) ≡ max{|v − f [τ ]|, |f [τ ± iM ]|, |Mv −
∑

n

f [n]|} (52)

where the subscript i in εi denotes interpolation. Here the value εi is determined as the maximum
of the absolute values from the tests of the central coefficient, required zeros, and coefficient sum.

This more general test permits some flexibility allowing for up to three different normalizations
of the interpolation filter. However, restricting the test to just one of the three normalizations
provides a more specific standardized test. Thus, all values εi of the function mie(f) reported here
were computed for the filter normalization with 1 = f [τ ] and 2 = M =

∑
n fn enabling exact

interpolation.

2.3.3 Phase NonLinearity

With regard to the phase contribution for the filter root complex conjugate duplet {zk, z̄k}
selected from the quadruplet {zk, z̄k, z−1

k , z̄−1
k }, Daubechies [6, pg. 255] provided a derivation for

the formula

Φcc(ω; zk) = arctan
[

(r2k − 1) sin(ω)
(r2k + 1) cos(ω) − 2rk cos(αk)

]
(53)

where her notation has been modified here with use of zk = rke
iαk and the subscript cc denotes

complex conjugates. For the real root zl = rl selected from the reciprocal duplet {zl, z−1
l }, she gave

Φrs(ω; zl) = arctan
[
rl + 1
rl − 1

tan(ω/2)
]

(54)
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as the formula for the phase contribution, here with subscript rs denoting real singlets. Her method
was extended by Taswell [45] with an analogous derivation for the phase contribution from the
complex reciprocal duplet {zj , z−1

j } selected from the quadruplet {zj , z̄j , z−1
j , z̄−1

j } resulting in the
formula

Φcr(ω; zj) = arctan

[
(rj − r−1

j ) sin(αj)

(rj + r−1
j ) cos(αj) − 2 cos(ω)

]
(55)

with the subscript cr denoting complex reciprocals.
Daubechies extracted the nonlinear component of each contribution by subtraction of the linear

component [6, pg. 255] with the formula

Ψ(ω) = Φ(ω) − ω

2π
Φ(2π) (56)

after first removing (“ironing out”) jump discontinuities in Φ(ω) by choosing the continuous valua-
tion of arctan over the interval [0, 2π] such that arctan(0) = 0. While appropriate for the real filters
examined by Daubechies, this interval must be shifted to [−π, π] to account for spectral factors
yielding either real or complex filters. Thus, redefine

Ψ(ω) = Φ(ω) − ω

π
Φ(π) (57)

and compute the total nonlinear phase

Υ(ω) =
ncr∑
j=1

Ψcr(ω; zj) +
ncc∑
k=1

Ψcc(ω; zk) +
nrs∑
l=1

Ψrs(ω; zl) (58)

by summing the contributions from all roots (except those at z = −1). Here 0 ≤ ncr ≤ ncq/2,
0 ≤ ncc ≤ ncq/2, and 0 ≤ nrs ≤ nrd/2 are the numbers of complex reciprocal duplets, complex
conjugate duplets, and real singlets, while ncq and nrd are the numbers of complex quadruplets and
real duplets defined in both Sections 2.1.2 and 2.1.3 for the Lagrange and Daubechies polynomials.
For filters designed by typical selection criteria as explained in Section 2.4, ncr and ncc are not both
simultaneously nonzero, whereas nonzero nrs may occur for either nonzero ncr or ncc.

Given the filter F(z) specified by its roots, we can now define its phase nonlinearity as the
Lp[−π, π] integral of Υ(ω). Thus,

ϕ = pnl(F ; p) ≡
(∫ π

−π
|Υ(ω)|p dω

)1/p

(59)

with a discrete sum approximation computed by trapezoidal or other quadrature rule. By default,
assume that p = 1 for the L1[−π, π] integral.

2.3.4 Other Filter Parameters

All other filter parameters were computed as described by Taswell [48]. Parameters estimated
include the time-domain regularity ρ = tdr(F), frequency-domain selectivity ς = fds(F), time-
frequency uncertainty υ = tfu(F), vanishing moments numbers ν = vmn(F) (defined assuming
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a tolerance of 1 × 10−4), M -shift biorthogonality error εb = mbe(A,S), M -shift orthogonality
error εo = moe(F), and M -band reconstruction error εr = mre(A,S). All filter parameters are
computed as empirical estimates with the exception of tdr(S) for the DRBSS family. Since tdr(F)
is estimated with the roots zk 6= −1 of F(z), and the set of such roots is empty for S(z) in the
DRBSS family, tdr(S) was assigned the value Ks.

2.4 Selection of Spectral Factors

2.4.1 Factorization Rules

For an arbitrary polynomial F(z) with length N coefficients, there are N − 1 roots of which
0 ≤ K ≤ N − 1 may be at z = −1. When considering spectral factorization, the product filter
polynomial PD(z) with Np = 4D + 3 coefficients and Kp = 2D + 2 roots at z = −1 is factored into
the analysis and synthesis filter polynomials A(z) and S(z) with Na and Ns coefficients, and Ka

and Ks roots at z = −1, respectively. This factorization yields the constraints

Np = Na +Ns − 1 (60)

Kp = Ka +Ks (61)

on the lengths of the three filters and their roots at z = −1. Each family of filters has been named
with an identifying acronym followed by (Na, Ns;Ka,Ks) in the biorthogonal cases and by (N ;K)
in the orthogonal cases for which

N = Na = Ns (62)

K = Ka = Ks (63)

is required. Tables 1 and 2 summarize the names and designs of the filter families.
With regard to the various cases of real biorthogonal, real orthogonal, and complex orthogonal,

various additional constraints must be imposed. If Ka, Ks, and Kp = Ka + Ks are the numbers
of roots at z = −1 for A(z), S(z), and P(z), respectively, then the corresponding filters have
coefficient lengths

Na = Ka + 4ncq
a + 2nrd

a + 1 (64)

Ns = Ks + 4ncq
s + 2nrd

s + 1 (65)

Np = 2Kp − 1 (66)

where ncq
a , ncq

s , nrd
a , and nrd

s are the numbers of complex quadruplets {z, z−1, z̄, z̄−1} and real
duplets {r, r−1} for A(z) and S(z). Both ncq and nrd may be whole or half integer. If half integer,
then half a complex quadruplet denotes a complex duplet while half a real duplet denotes a real
singlet.

For Ka and Ks necessarily both odd or both even, then Kp is always even and K = Kp/2 a
whole integer determines ncq

p = ncq
a + ncq

s and nrd
p = nrd

a + nrd
s according to ncq

p = b(K − 1)/2c and
nrd

p = (K−1) mod 2. If Ka and Ks are given, then Kp and K yield ncq
p and nrd

p split into {ncq
a , nrd

a }
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and {ncq
s , nrd

s } and the roots are factored accordingly. For real coefficients, a root z must be paired
with its conjugate z̄. For symmetric coefficients, a root z must be paired with its reciprocal z−1.
For 2-shift orthogonal coefficients, a root z must be separated from its conjugate reciprocal z̄−1.

Thus, in the real biorthogonal symmetric case, each complex quadruplet {z, z̄, z−1, z̄−1} and
real duplet {r, r−1} must be assigned in its entirety to either A(z) or S(z). In the real orthogonal
case, each complex quadruplet is split into two conjugate pairs {z, z̄} and {z−1, z̄−1}, while each
real duplet is split into two singlets {r} and {r−1}, with one factor assigned to A(z) and the other
to S(z). The complex orthogonal case is analogous to the real orthogonal case except the complex
quadruplets are split into reciprocal pairs {z, z−1} and {z̄, z̄−1} instead of conjugate pairs. The
complex orthogonal symmetric case requires use of complex quadruplets without real duplets.

All orthogonal cases require K = Ka = Ks = Kp/2, ncq
a = ncq

s = ncq
p /2, and nrd

a = nrd
s = nrd

p /2
with N = Na = Ns = 2K. Note that nrd

p can only equal 0 or 1. Therefore, in biorthogonal
cases, either {nrd

a = 0, nrd
s = 1} or {nrd

a = 1, nrd
s = 0}. However, in orthogonal cases, either

{nrd
a = nrd

s = 0} or {nrd
a = nrd

s = 1/2} with 1/2 of a duplet denoting a singlet. For all real
orthogonal cases as well as complex orthogonal cases not involving symmetry criteria, K can be
any positive integer. For the complex orthogonal least-asymmetric and most-asymmetric cases, K
must be a positive even integer. For the complex orthogonal least-symmetric and most-symmetric
cases, K must be a positive odd integer.

For real biorthogonal symmetric cases, Ka and Ks must be both odd or both even. In the
biorthogonal symmetric spline case, all additional roots (other than those at z = −1 with assign-
ment determined by Ka and Ks) are assigned to A(z) leaving S(z) as the spline filter. All other
biorthogonal symmetric cases incorporate a root assignment constraint that balances the lengths
of the analysis and synthesis filters such that Na ≈ Ns as much as possible. Thus, the lengths
Na (Eq. 64) and Ns (Eq. 65) are balanced with ncq

a , n
cq
s , nrd

a , n
rd
s determined with the following

pseudocode:

ncq
a = 0; ncq

s = 0;
if ncq

p ;
if Ks > Ka; n

cq
a = bKs/4c;ncq

s = ncq
p − ncq

a ;
elseif Ka > Ks;n

cq
s = bKa/4c;ncq

a = ncq
p − ncq

s ;
else; ncq

a = dncq
p /2e;ncq

s = ncq
p − ncq

a ; end;
end;
nrd

a = 0; nrd
s = 0;

if nrd
p ;
if Ks + 4 ∗ ncq

s >= Ka + 4 ∗ ncq
a ; nrd

a = 1;
else; nrd

s = 1; end;
end;

For Ka = 2i− 1 and Ks = 2j− 1 both odd with i, j ∈ {1, 2, 3, . . . }, balancing of equal filter lengths
is possible. In fact, requiring both Ka = Ks and Na = Ns is also possible when N = Na = Ns = 2K
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with K = Ka = Ks for {K = 1 + 4k | k = 1, 2, 3 . . . }. However, for Ka = 2i and Ks = 2j both
even, equal balancing of filter lengths Na and Ns is not possible. The additional unbalanced roots
are assigned to A(z) such that Na > Ns leaving S(z) as the shorter filter.

2.4.2 Selection Criteria

Simple geometric rules are used as selection criteria for the three families not subjected to
a combinatorial optimization search. Thus, the DRBSS, DROMD, and DCOMD families assign,
respectively, all roots {zj 6= −1}, {zj = rje

iαj | rj < 1}, and {(zj , z
−1
j ) | rj < 1, αj ≥ 0} to A(z).

The DROMD family, which is real and orthogonal, has been called “extremal phase” [5] and “least
delayed” [50]. It has been renamed here for consistency with the DCOMD family, which is complex
and orthogonal. For both DROMD and DCOMD families, the MD for “most disjoint” refers to the
geometric separability of the root sets for A(z) and S(z) with the simplest topology.

Numerical estimates of defined filter parameters are used as selection criteria for all other families
subjected to optimization. These criteria include pnl(A), tdr(A), fds(A), and tfu(A) (Section 2.3.4).
Most of the orthogonal families are defined by pnl(A) selecting for varying degrees of asymmetry
or symmetry (Section 2.3.3). Previous work [45, 50] has been revised by the shift of the integration
interval for pnl(A) from [0, 2π] to [−π, π] and by the use of pnl(A) as a “tie-breaker” criterion for
root subsets in families optimized by the other criteria. These revisions now insure unique criterion
values for each root subset examined in the combinatorial search. The complexity of the search can
be reduced by ignoring binary complements of coded root subsets for orthogonal families in all cases
as long as the final selected root subset is subjected to a comparison test to choose the primary
versus the complementary. The necessity to choose between the primary and complementary coded
subsets for biorthogonal families occurs only for cases when Ka = Ks, n

cq
a = ncq

s , and nrd
a = 0 = nrd

s

all hold true.
Minimizing or maximizing pnl(A) for real filters defines DROLA and DROMA, respectively, the

least and most asymmetric families. If the parity of K is ignored, then minimizing or maximizing
pnl(A) for complex filters defines DCOLN and DCOMN, respectively, the least and most nonlinear
families. Phase nonlinearity does not exist and cannot be used for the biorthogonal families all
of which are real and symmetric. Therefore, one of the other filter parameters must be used as
an optimization criterion to select the spectral factors for these symmetric families. In addition,
these biorthogonal families are subjected to the length constraints determined by the principle of
balancing the filter lengths for both A(z) and S(z) as described in Section 2.4.1.

For all but one of the families subjected to a combinatorial search, the selection criterion is
optimized for the analysis filter. The DRBBR family is the exception where the selection criterion
is optimized for both analysis and synthesis filters by maximizing a balancing measure B defined
as

B(tdr(·),A,S) =
∣∣∣∣tdr(A) + tdr(S)
tdr(A) − tdr(S)

∣∣∣∣ (67)

when applied to tdr(·) for A and S. In this case, an exception is also made to the primary subset
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versus complementary subset comparison rules (Section 2.4.3). After balancing the regularities for
both A and S, the final selection is chosen so that tdr(S) > tdr(A).

Table 2 summarizes the filter designs for the families. Note that the DCOLN family is the union
of the even-indexed DCOLA and odd-indexed DCOMS families, while the DCOMN family is the
union of the even-indexed DCOMA and odd-indexed DCOLS families. Also, two pairs of families
are computed via different algorithms but should ideally be equivalent, and thus provide a test for
verifying computational methods. The DROMD and DROMA families should be equivalent real
families, while the DCOMD and DCOMN families should be equivalent complex families.

2.4.3 Unifying Algorithm

All filter families of the systematized collection are generated by the spectral factorization
and optimizing combinatorial search incorporated in the following algorithm which has been im-
plemented in MATLAB and called fcdmlmf for Filter Coefficients Daubechies Minimum Length
Maximum Flatness:

1. Input the identifying name FiltName for the family of filters and the indexing design param-
eters Ka and Ks.

2. Compute Kp = Ka + Ks, D = Kp/2 − 1, and the ncq
p = bD/2c complex quadruplet and

nrd
p = D mod 2 real duplet roots of the quotient filter QD(z) (Section 2.1.3).

3. Determine the factorization rules and selection criterion that define the family of filters named
FiltName.

4. Compute the splitting number pairs {ncq
a , n

cq
s } and {nrd

a , n
rd
s } from {ncq

p , nrd
p } for the FiltName

filter pair indexed by {Ka,Ks}.

5. Sort the roots in an order convenient for the class of splitting appropriate to the type of filter.
All roots of a complex quadruplet should be adjacent with duplets of the quadruplet subsorted
according to conjugates or reciprocals depending on the filter type. Assign binary coded labels
0 and 1 to the first and second duplet of each quadruplet. Analogously assign binary codes
to the first and second singlet of the real reciprocal duplet if present. If biorthogonal, assign
binary coded labels 0 or 1 to each of the entire quadruplets and duplets.

6. Generate the possible binomial subsets for these binary codes [33] subject to the imposed
factorization rules and splitting numbers. For orthogonal filters, there are a total of ncq

a +nrd
a

binary selections without constraint on the bit sum, and thus 2ncq
a +nrd

a −1 binomial subsets
ignoring complements. For biorthogonal filters, there are a total of ncq

p binary selections with
bit sum constrained to ncq

a , and thus
(ncq

p

ncq
a

)
binomial subsets.

7. For each root subset selected by the binomial subset codes, characterize the corresponding
filter by the optimization criterion appropriate for the FiltName family. These optimization
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criteria may be any of the numerically estimated filter parameters computed from the roots
or the coefficients (Section 2.3, also [48]).

8. Search all root subsets to find the one with the optimal value of the desired criterion. If
necessary, apply the “tie-breaker” criterion.

9. Include the Ka and Ks required roots at z = −1 respectively for the selected optimal subset
of roots intended for the spectral factor A(z) and for the complementary subset intended for
the synthesis spectral factor S(z).

10. For orthogonal filters, compare the selected (primary) subset of filter roots and coefficients
with its complementary subset to choose the one with minimax group delay over the interval
ω ∈ [0, π] as the subset for A(z). For biorthogonal filters, compare the primary and comple-
mentary subsets only if Ka = Ks, n

cq
a = ncq

s , and nrd
a = 0 = nrd

s in order to choose the one
with the defining criterion optimized for A(z).

After the filter roots have been selected for each of A(z) and S(z), the filter coefficients for the
scalets and wavelets can be computed as explained in Section 2.2.1. Full searches of all possible
combinatorial subsets should be performed for a sufficient number of K indices for the filter family’s
members to infer the appropriate pattern of binary codes with bit sums characterizing the family.
Using such a pattern permits successful partial rather than full combinatorial searches. These
partial searches provide significant reduction in computational complexity convenient for larger
values of K (Section 4).

2.5 Hardware and Software

All results reported here were computed with Version 4.5b1 of the WAVB3X Software Library
[42] running in Version 5.2.1 of the MathWorks MATLAB technical computing environment [25] on
a Toshiba Tecra 720CDT with a 133 MHz Pentium CPU and the Microsoft Windows 95 operating
system.

3 Results

3.1 Computation of Filter Roots

Figures 1 and 2 display the roots of the Daubechies polynomial PD(z) for D = 30 and the
impulse and frequency responses of its associated filter named DRNSI(123;62;61). Identical results
(not shown) were obtained for the corresponding example with L = 31 for the family of Lagrange
polynomials PL(z) with associated filter named LRNSI(N ;K; d). This example demonstrates the
equivalence of computational results for low order polynomials of the two families when L = D +1.
Recall that the family of polynomials {PD(z)|D = 0, 1, . . . } are indexed according to the number D
of unique roots from which the coefficients are determined, while the family {PL(z)|L = 1, 2, . . . }
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are indexed according to the number L of unique symmetric coefficients from which the roots are
determined.

To clarify further the distinction between LRNSI(N ;K; d) and DRNSI(N ;K; d) for given (N ;K; d),
note that the coefficients of the filter LRNSI(N ;K; d) can be computed explicitly as the coefficients
(Eq. 7) of the Lagrange polynomial PL(z). However, the coefficients of the filter DRNSI(N ;K; d)
can only be computed indirectly via the roots of the conditioned form CD(x) (Eq. 16) or the
binomial form BD(y) (Eq. 15) of the Daubechies polynomial PD(z). Either LRNSI(N ;K; d) or
DRNSI(N ;K; d) can be used as the product filter for spectral factorization to obtain orthogonal
and biorthogonal scalets and wavelets. Analytically, if L = D + 1, then ideally PL(z) = PD(z) and
LRNSI(N ;K; d) = DRNSI(N ;K; d) with equality of respective roots and coefficients. However,
numerically, these relations hold true only for low order polynomials and filters.

For high order polynomials and filters, differences between the two families can be revealed
clearly. For example, consider the case with K = 200 roots at z = −1 where bifurcations oc-
curred in the root distribution patterns for both filters. However, the M th-band interpolation
errors (Eq. 52) differed dramatically with LRNSI(399;200;199) passing (mie(pL) = 6.7×10−16) but
DRNSI(399;200;199) failing (mie(pD) = 1.4 × 10+11) this test. This difference reflects the insta-
bility in the computation of the coefficients from the roots for DRNSI. Moreover, the absence of a
significant numerical value for the sorted roots error (Eq. 45) for either filter (sre(PL) = 1.0×10−36

for LRNSI and inferred from sre(CD) = 3.6 × 10−14 for DRNSI) does not insure the absence of
a visually observeable bifurcation pattern in the root distribution. However, analytically in the
absence of numerical error, there should be no bifurcation. Thus, Temme’s root tests (Eq. 43,
Eq. 44) implemented as the sorted roots error test (Eq. 45) may be necessary but not sufficient as
a measure of the accuracy of the roots of a polynomial.

Figures 3 and 4 display examples of LRNSI and DRNSI with K = 162 where root bifurcation
occured for LRNSI while coefficient instability occured for DRNSI. Again, in this case, neither the
absence of a significant value for the sorted roots error nor the absence of a visually observeable
bifurcation pattern in the roots for DRNSI insured the absence of an instability in the computation
of the coefficients. Figure 2 displays an example of DRNSI with K = 62 where visually observeable
root bifurcations and coefficient instabilities did not occur. Moreover, the errors sre(P), rce(P),
and mie(p) were all acceptably small (similarly for the comparable example of LRNSI, not shown).
However, the vanishing moments numbers vmn(p) did not approach the expected values. Analyti-
cally, vmn(p) = K is expected. Instead numerically, vmn(pL=31) = 14 and vmn(pD=30) = 5 were
observed. These various examples demonstrate that the desired characteristic of a filter as reflected
in a defined parameter must be tested directly in the appropriate domain of roots or coefficients.

Figure 5 provides a summary of the sorted root errors sre(P) (Eq. 45) and the reconstructed
coefficient errors rce(P) (Eq. 46) for both the Lagrange PL(z) and Daubechies PD(z) polynomials
corresponding to the sequence {Kp = 2i|i = 1, 2, . . . , 100} for the number of roots at z = −1.
Root errors for the Daubechies sequence were computed for the indirect Daubechies conditioned
form CD(x) (Eq. 16) whereas root errors for the Lagrange sequence were computed for the direct
Lagrange form PL(z) (Eq. 7). The upper curves in each subplot represent the errors rce(CD) and
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rce(PL) while the lower curves represent the errors sre(CD) and sre(PL). Assuming a tolerance of
10−6 for the errors rce(·), the roots and coefficients can be computed and reconstructed accurately
up to Kp = 134 (L = 67)and Kp = 74 (D = 36) for the Daubechies and Lagrange sequences,
respectively.

3.2 Generation of Filter Coefficients

Alternative iterative convolution methods for computing filter coefficients from filter roots as ex-
plained in Section 2.2.1 were investigated for the DRNSI filters over a wide range of orders. Results
[46] were scored both objectively with the M th-band interpolation error mie(p) and subjectively
with visual examination of the estimate of the continuous impulse response. At low order, all
iterative convolution alternatives produced satisfactory and equivalent results. At high order, the
convolution alternatives with Edrei-Leja order or with quadratic or quartic multiplier factors pro-
vided some stabilization but not sufficient to generate the correct impulse response for the half-band
interpolation filter. Use of the convolution alternative with linear factors (c = 1 in Section 2.2.1)
sorted in increasing absolute value order was chosen as the convention to generate all of the filters
in the collection.

Figure 6 displays plots of estimates of the continous impulse and frequency responses for the
lowpass scalet (dotted curves), highpass QMF wavelet (dashed curves), and highpass CQF wavelet
(solid curves) for both even and odd parity (p = 0 and p = 1 in Section 2.2.3). The QMF and
CQF wavelets have the same magnitude response but different phase responses, phase delays, and
group delays. For each of the scalet, QMF wavelet, and CQF wavelet, the group delays are the
same for both parities p = 0 and p = 1. However, the parity p does determine the location of the
phase discontinuity in the phase response. In this example, for the CQF wavelet with p = 0, the
discontinuities occur at ω = ±π/2 whereas with p = 1, they occur at ω = ±π and at ω = 0. Use
of p = 1 was chosen as the convention to generate the filter collection.

3.3 Evaluation of Filter Parameters

Maximizing or minimizing the phase nonlinearity pnl(A) of the analysis factor A(z) served as
a selection criterion to generate many of the filter families in the collection. Figures 7 and 8 dis-
play two examples of pnl(A) for A(z) selected respectively for DCOLA(12;6) and DCOMA(12;6)
obtained from PD(z) with D = 5. In these examples, there are two sets of complex duplets and one
real singlet contributing to the phase nonlinearity. Computation of pnl(A) on the interval [0, 2π]
instead of [−π, π] failed to discrimate properly between alternative root sets for these examples,
and thus failed as a selection criterion yielding unique solutions. In contrast, use of the inter-
val [−π, π] provided a discriminating criterion confirmed by distinct values for each root set. In
particular, for this example, the correct solution for DCOMA(12;6) was confirmed by comparison
with DCOMD(12;6). Additional examples demonstrating computation of all of the various filter
parameters used here as selection criteria can be found in [48].
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3.4 Selection of Spectral Factors

To provide a complete pictorial representation of spectral factorization, a graphical array format
has been devised with product P(z) and factors A(z) and S(z) in the rows, for each of which in
the columns there are the roots, magnitude response, group delay response, and impulse response.
Figures 9 and 10 display orthogonal and biorthogonal examples, respectively. The orthogonal
example with DCOLA(12;6) in Figure 9 corresponds to the same example in Figure 7 with pnl(A) =
2.86 the selected minimum. The biorthogonal example with DRBMS(17,15;8,8) in Figure 10 was
selected with maximum fds(A) = 0.72 when pnl(A) = 0 for this symmetric family. Additional
examples demonstrating spectral factorizations for all of the filter families with graphical displays
in this format can be found in [46]. Figures 11 and 12 present visual comparisons of the distinct
spectral factors selected for each of the real and complex orthogonal families at K = 11 and K = 12.
In the subplots for roots, “o” and “x” represent the roots for A(z) and S(z), respectively. For each
spectral factorization root set, there are two corresponding subplots for the analysis scalet and
wavelet impulse responses. Real and imaginary parts of complex responses are shown in solid and
dotted lines, respectively. Finally, to demonstrate the complete set of scalets and wavelets for a
given family, Figures 13 and 14 display the DCOLN scalets and wavelets from K = 1 to K = 24.
Technically, as listed in Table 2, complex filters for DCOLN require K ≥ 3 because all orthogonal
families are equivalent and real for K ≤ 2. However, for consistency of comparisons with all other
families (see below), graphical displays and numerical tables were arranged such that K = 1 and
K = 2 were included.

3.5 Comparison of Filter Families

Using roots of the Daubechies polynomial PD(z) obtained with the conditioned form CD(x),
all filters of all Daubechies biorthogonal and orthogonal families were verified to meet or surpass
requirements for biorthogonality, orthogonality, and reconstruction when tested [48] in 2-band
wavelet filter banks. In general, reconstruction errors ranged from “perfect” at O(10−16) to “near-
perfect” at O(10−8) as K = Ka = Ks ranged from K = 1 to K = 24 for both biorthogonal and
orthogonal classes. The corresponding Kp = 48 for Ka = Ks = 24 remains well below the tolerance
limit set at Kp = 74 with errors rce(·) < 10−6 for computation of the filters via the Daubechies
conditioned form.

All filter families were observed to have the optimal values of their defining selection criterion
when compared to the other families (Tables 3 to 8). Two examples are also displayed graphically
with readily discernible visual patterns. An increasing linear trend appears for both DCOMN and
DROMA families in Figure 15 which summarizes pnl(A) for orthogonal filters. Although not as
highly correlated, linear trends also appear for several of the families in Figure 16 which summarizes
fds(a0) and fds(s0) for biorthogonal filters. The columns in the tables and the lists in the figure
legends order the filter families according to the median values of the analysis filter parameter
values observed for 1 ≤ K ≤ 24. Additional figures for all parameters of all filter families can be
found in [46].
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Finally, Tables 9 and 10 list vmn(a1) and vmn(s1) for biorthogonal families and vmn(a1) for
orthogonal families, respectively. The tables do not list vmn(a0) and vmn(s0) for the scalets.
However, results were observed as follows: For biorthogonal scalets, vmn(a0) = 0 and vmn(s0) = 0
for odd K, while vmn(a0) = 2 and vmn(s0) = 2 for even K. For orthogonal scalets, vmn(a0) = 0
for all K.

The DCOLS and DCOMS families have symmetric scalets and anti-symmetric wavelets, while
DCOLA, DCOMA, DROLA, and DROMA have asymmetric scalets and wavelets. Combining the
odd-indexed DCOMS and even-indexed DCOLA yields the union DCOLN = DCOMS ∪ DCOLA.
Combining the odd-indexed DCOLS and even-indexed DCOMA yields the union DCOMN =
DCOLS ∪ DCOMA. All have nonlinear group delays for both scalets and wavelets. The equivalences
DROMA = DROMD and DCOMN = DCOMD were both confirmed for all K. For all filter families
examined with indices in the range 2 ≤ K ≤ 24 (that is, excluding the Haar filters at K = 1),
the minimum pnl(A) = 0.511 occurs for DCOLN(46;23) while the maximum pnl(A) = 52.244 oc-
curs for DCOMN(48;24). The second least value of pnl(A) = 0.564 occurs for DROLA(10;5) =
DROLU(10;5).

K = 6 is the minimum K for which tdr(A) ≥ 2. At K = 6, the maximum tdr(A) = 2.244 occurs
for DROMR(12;6) and the minimum tfu(A) = 0.694 occurs for DROLU(12;6) = DROLA(12;6).
K = 9 is the minimum K for which tdr(A) ≥ 3. At K = 9, the maximum tdr(A) = 3.161 occurs
for DCOMR(18;9) = DCOMN(18;9) and the minimum tfu(A) = 0.795 occurs for DCOLU(18;9)
= DCOLN(18;9). K = 13 is the minimum K for which tdr(A) ≥ 4. At K = 13, the max-
imum tdr(A) = 4.106 occurs for DCOMR(26;13) and the minimum tfu(A) = 0.847 occurs for
DROLU(26;13). These examples demonstrate that for a given value of K and a given filter pa-
rameter the optimal value does not necessarily occur consistently for either the real or complex
family.

As a final observation, for orthogonal filters, K = 11 is the minimum K for which the filters from
all of the defined families are each distinct from one another for the given value of K (excluding the
equivalence for all K of the two pairs of families DROMD = DROMA and DCOMD= DCOMN).
Analogously, for biorthogonal filters, K = 12 is the minimum K = Ka = Ks for which filters from
all families are distinct for the given K.

4 Discussion

Computational algorithms have been developed for generating a systematized collection of
Daubechies compact wavelets with a unifying algorithm incorporating filter design via spectral
factorization of the Daubechies polynomial. These wavelet filters have minimum length and maxi-
mum flatness as well as any of a variety of other desired filter characteristics chosen for optimization.
Criteria investigated include time-domain regularity, frequency-domain selectivity, time-frequency
uncertainty, and phase nonlinearity (Tables 1 and 2).

Empirical estimates of these filter parameters have been used in conjunction with spectral fac-
torization and combinatorial search methods to unify all of the diverse families of real and complex
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orthogonal and biorthogonal Daubechies wavelets with a single algorithm (Section 2.4.3). This
automated algorithm is valid for any order K of Daubechies wavelet subject to certain tolerances
(see below) and insures that the same consistent choice of roots is always made in the computation
of the filter coefficients. It is also sufficiently flexible and extensible that it can be generalized to
select roots for filters optimized by (possibly weighted) combinations of criteria other than those
investigated here.

The important criterion of phase nonlinearity has been used to design wavelet filters with
varying degrees of symmetry or asymmetry. The terms “symmetric” and “asymmetric” have been
used in reference to the actual coefficients, whereas the modifying superlatives “least” and “most”
have been used in reference to the phase nonlinearity of the coefficients. In particular, asymmetric
coefficients with either minimal or maximal phase nonlinearity (pnl(A) > 0) have been called,
respectively, “least asymmetric” and “most asymmetric” for the complex orthogonal case with
even K and for the real orthogonal case. Analogously, symmetric coefficients with minimal or
maximal pnl(A) > 0 have been called, respectively, “most symmetric” and “least symmetric” for
the complex orthogonal case with odd K. The unmodified term “symmetric” has been used for the
real biorthogonal case where symmetric coefficients with linear phase (pnl(A) = 0 and pnl(S) = 0)
are possible.

Some of these families can be collected as unions. Defining another family as complex orthogonal
“least nonlinear” for all K permits the union of the most symmetric for odd K with the least
asymmetric for even K. Thus, DCOLN = DCOMS ∪ DCOLA. Similary, defining the family
complex orthogonal “most nonlinear” permits the union of the least symmetric for odd K with
the most asymmetric for even K. Thus, DCOMN = DCOLS ∪ DCOMA. In the real case, there
is no need for an analogous definition since DROLA and DROMA are each defined for all K.
Thus, DROLN = DROLA and DROMN = DROMA as simply a relabeling of names without any
distinction in defining criteria or algorithms.

Contrast this relabeling of the same definition with the examples of the pairs DROMD and
DROMA, and DCOMD and DCOMN, which have distinct defining algorithms. In fact, roots for
each of DROMD and DCOMD are selected strictly by geometric criteria without an optimization
search, while roots for each of DROMA and DCOMN are selected by maximizing pnl(A) > 0
over all possible combinatorial subsets of roots. However, both equivalences DROMD = DROMA
and DCOMD = DCOMN for all K were experimentally observed as expected, thus providing an
important consistency test of this part of the theory and implementation of the algorithms in an
actual computer program.

Use of the automated algorithms results in the identification of new and interesting wavelets.
As one particular example, for the DRBBR family, an analysis-synthesis pair, each with K = 5
vanishing moments and length N = 10 coefficients, but with different time-domain regularities
of tdr(A) = 1.213 and tdr(S) = 2.321, has been identified as the shortest of a sequence of pairs
which occurs for {K = 1 + 4k | k = 1, 2, . . . }. This new biorthogonal (10,10;5,5) filter pair can be
compared with the well-known (9,7;4,4) pair with regularities tdr(A) = 1.068 and tdr(S) = 1.701.
In the setting of image compression with symmetric biorthogonal filters, the increased regularity



28 Taswell: Systematized Collection Daubechies Wavelets.

of the (10,10;5,5) pair should help reduce reconstruction artifacts.

Reviewing the various filter families generated by the algorithms, some general conclusions can
be made. With regard to the product filters, both PD(z) and PL(z) are suitable for both com-
putation of roots and generation of coefficients for low degree polynomials. However, as expected
for higher degree polynomials, PD(z) and PL(z) prove to be more numerically stable, respectively,
for roots (Section 3.1) and coefficients (Section 3.2). Using PD(z) as the source of the roots and
moe(A) as a measure of stability with tolerance set at 1 × 10−6 and A taken from either the
DROMD or DCOMD families, then coefficients from the roots can be readily computed in a stable
manner up to D = 35 and D = 56 corresponding to their use respectively for DROMD(72;36)
and DCOMD(114;57) with K = 36 and K = 57 in these families which do not require optimizing
searches.

To search root subsets for the other orthogonal families, given the order K and thus ncq =
b(K − 1)/2c complex quadruplets and nrd = (K − 1) mod 2 real duplets, there are a total of
2ncq+nrd−1 subsets for the full search ignoring complements. Denoting the partial searches with
kmin and kmax, there are a total of

∑kmax
k=kmin

(
ncq+nrd

k

)
subsets ignoring complements. DROMR

was the only family observed to require kmin = 0 and kmax = bK/4c, while DCOMR required
kmin = bK/4c − 2 and kmax = bK/4c. But for given K, tdr(A) for all of the orthogonal families
was sufficiently similar that it would not justify such an expensive optimization search for high
order K. Nevertheless, other orthogonal families such as DROLU, DCOLU, and DCOLN required
kmin = bK/4c − 1 and kmax = bK/4c while DROLA required kmin = kmax = bK/4c. (Since
DROMA = DROMD and DCOMN = DCOMD, optimizing searches are not necessary for these
families because they can always be computed via DROMD and DCOMD.) Given the empirical
conjecture that these partial searches are sufficient, then optimizing searches for these other families
up to the orders K = 36 and K = 57 mentioned above are in fact feasible on today’s fast machines
because for (ncq = 17, nrd = 1) and (ncq = 28, nrd = 0) there are respectively

(18
8

)
+ 1

2

(18
9

)
= 6.8×104

and
(28
13

)
+ 1

2

(28
14

)
= 5.8 × 107 subsets (recalling

(
n
k

)
= 1

2

(
n

n/2

)
for even n and k = n/2 when ignoring

complements).

Since the rate-limiting step in the algorithm is the evaluation of each binomial coded subset
of roots, the computational complexity is approximately O(cK

(
ncq+nrd

bK/4c
)
) where c is a constant

determined by the type of filter characteristic evaluated during the search. Thus, combinatorial
searches remain practical for Daubechies wavelets of moderate order K ≤ 36 and even higher order
K ≤ 57 when optimized in search spaces parameterized by the order K and the binary codes of the
binomial subsets for the roots obtained from spectral factorization. Even though the empirically
observed vmn(a1) = K for all orthogonal families only for K ≤ 13, and peak at vmn(a1) ≈ 17
for some of the families, the use of increasing K > 17 does serve to constrain the search space
for higher order wavelets with increasing N , increasing fds(A), and whichever other desired filter
characteristic. In contrast, results for methods based on angular parameterizations with lattice
filter designs have so far been demonstrated only for K ≤ 3.

Systematizing a collection of Daubechies wavelet filters with a mechanism both for generating
and evaluating the filters enables the development of filter catalogues with tables of numerical
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parameter estimates characterizing their properties such as those found in Tables 3–10. Providing
estimates for a variety of characteristics in both time and frequency domains, rather than just
the optimized characteristic, constitutes an important aspect of these tables which enhances their
utility. Use of these reference catalogues as a convenient resource then enables the investigator to
choose an available filter with the desired characteristics most appropriate to the research problem
or development application.
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[12] A. Edrei. Sur les déterminants récurrents et les singularités d’une fonction donnée par son developpement
de Taylor. Composito Math., 7:20–88, 1939. 2.2.1

[13] D. Esteban and C. Galand. Application of quadrature mirror filters to split band voice coding schemes.
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pages
191–195, May 1977. 2.2.3



30 Taswell: Systematized Collection Daubechies Wavelets.

[14] N. J. Fliege. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. John
Wiley & Sons, Chichester, England, 1994. 2.2.3

[15] Tim N. T. Goodman, Charles A. Micchelli, Giuseppe Rodriguez, and Sebastiano Seatzu. Spectral
factorization of Laurent polynomials. Advances in Computational Mathematics, 1997. 1, 2.1.1, 2.1.2,
2.1.3, 2.1.3, 2.3.1

[16] Cormac Herley. Exact interpolation and iterative subdivision schemes. IEEE Transactions on Signal
Processing, 43(6):1348–1359, June 1995. 2.1.2

[17] Nicholar J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1996. 2.2.1

[18] Markus Lang and Bernhard-Christian Frenzel. Polynomial root finding. 1(10):141–143, October 1994.
2.2.1

[19] Wayne M. Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet bases. J.
Math. Phys., 32(1):57–61, January 1991. 1

[20] Wayne M. Lawton. Applications of complex valued wavelet transforms to subband decompositions.
IEEE Transactions on Signal Processing, 41(12):3566–3568, December 1993. 1

[21] F. Leja. Sur certaines suits liées aux ensembles plans et leur application à la representation conforme.
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Table 1: List of Named Filters for Systematized Collection of Daubechies Wavelets

Name for Product P(z) Label

Lagrange Real Nonorthogonal Symmetric Interpolating LRNSI(N ;K; d)
Daubechies Real Nonorthogonal Symmetric Interpolating DRNSI(N ;K; d)

Name for Analysis and Synthesis Factors A(z) and S(z) Label

Daubechies Real Biorthogonal Symmetric Spline DRBSS(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Most Disjoint DRBMD(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Least Regular DRBLR(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Most Regular DRBMR(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Least Selective DRBLS(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Most Selective DRBMS(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Least Uncertain DRBLU(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Most Uncertain DRBMU(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Balanced Regular DRBBR(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Balanced Selective DRBBS(Na, Ns;Ka,Ks)
Daubechies Real Biorthogonal Balanced Uncertain DRBBU(Na, Ns;Ka,Ks)

Name for Square Root Analysis Factor A(z) Label

Daubechies Real Orthogonal Most Disjoint DROMD(N ;K)
Daubechies Complex Orthogonal Most Disjoint DCOMD(N ;K)
Daubechies Real Orthogonal Least Uncertain DROLU(N ;K)
Daubechies Complex Orthogonal Least Uncertain DCOLU(N ;K)
Daubechies Real Orthogonal Most Regular DROMR(N ;K)
Daubechies Complex Orthogonal Most Regular DCOMR(N ;K)
Daubechies Real Orthogonal Least Asymmetric DROLA(N ;K)
Daubechies Complex Orthogonal Least Asymmetric DCOLA(N ;K)
Daubechies Real Orthogonal Most Asymmetric DROMA(N ;K)
Daubechies Complex Orthogonal Most Asymmetric DCOMA(N ;K)
Daubechies Complex Orthogonal Least Symmetric DCOLS(N ;K)
Daubechies Complex Orthogonal Most Symmetric DCOMS(N ;K)
Daubechies Complex Orthogonal Least Nonlinear DCOLN(N ;K)
Daubechies Complex Orthogonal Most Nonlinear DCOMN(N ;K)

Filters have length N coefficients and K roots at z = −1. Interpolating filters are exact for
polynomials of regular degree d. All biorthogonal filters are symmetric. All biorthogonal filters
except DRBSS have balanced length.
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Table 2: Summary of Filter Designs for Systematized Collection of Daubechies Wavelets

Nonorthogonal P(z) Construction Constraint

LRNSI(N ;K; d) PL(z) coefs L ≥ 1
DRNSI(N ;K; d) via QD(z) roots D ≥ 0

Biorthogonal A(z), S(z) Factorization Constraint Optimization

DRBSS(Na, Ns;Ka,Ks) {zj 6= −1} to A(z) even (Ka +Ks) none
DRBMS(Na, Ns;Ka,Ks) conj recip quads even (Ka +Ks) max fds(A)
DRBLU(Na, Ns;Ka,Ks) conj recip quads even (Ka +Ks) min tfu(A)
DRBMR(Na, Ns;Ka,Ks) conj recip quads even (Ka +Ks) max tdr(A)
DRBBR(Na, Ns;Ka,Ks) conj recip quads even (Ka +Ks) maxB(tdr(·),A,S)

Orthogonal A(z) Factorization Constraint Optimization

DROMD(N ;K) {zj = rje
iαj | rj < 1} K ≥ 1 none

DCOMD(N ;K) {(zj , z
−1
j ) | rj < 1, αj ≥ 0} K ≥ 3 none

DROLU(N ;K) quads → conj dups K ≥ 1 min tfu(A)
DCOLU(N ;K) quads → recip dups K ≥ 3 min tfu(A)
DROMR(N ;K) quads → conj dups K ≥ 1 max tdr(A)
DCOMR(N ;K) quads → recip dups K ≥ 3 max tdr(A)
DROLA(N ;K) quads → conj dups K ≥ 1 min pnl(A)
DCOLA(N ;K) quads → recip dups even K ≥ 4 min pnl(A)
DROMA(N ;K) quads → conj dups K ≥ 1 max pnl(A)
DCOMA(N ;K) quads → recip dups even K ≥ 4 max pnl(A)
DCOLS(N ;K) quads → recip dups odd K ≥ 3 max pnl(A)
DCOMS(N ;K) quads → recip dups odd K ≥ 3 min pnl(A)
DCOLN(N ;K) quads → recip dups K ≥ 3 min pnl(A)
DCOMN(N ;K) quads → recip dups K ≥ 3 max pnl(A)

Product filter P(z) is split into spectral factors for analysis filter A(z) and synthesis filter S(z).
Names are abbreviated with first character L or D for Lagrange or Daubechies, second character
R or C for Real or Complex, and third character N, B, or O for nonorthogonal, biorthogonal, or
orthogonal. Complex conjugate reciprocal quadruplets are split into conjugate duplets or reciprocal
duplets. Real reciprocal duplets are split into real singlets but have been omitted from the table.
See Section 2.4 and especially Sections 2.4.1 and 2.4.2 for further explanation of factorization rules
and selection criteria, respectively.
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Table 3: Biorthogonal Scalets Time-Domain Regularity tdr(A) and tdr(S).

K DRBMR DRBLU DRBBR DRBMS DRBSS
A S A S A S A S A S

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 -0.000 1.000 -0.000 1.000 -0.000 1.000 -0.000 1.000 -0.000 1.000
3 -0.170 2.000 -0.170 2.000 -0.170 2.000 -0.170 2.000 -0.170 2.000
4 1.068 1.701 1.068 1.701 1.068 1.701 1.068 1.701 -0.449 3.000
5 2.321 1.213 2.321 1.213 1.213 2.321 2.321 1.213 -0.806 4.000
6 1.899 2.324 1.899 2.324 1.899 2.324 1.899 2.324 -1.223 5.000
7 1.881 2.960 1.881 2.960 1.881 2.960 1.881 2.960 -1.683 6.000
8 3.215 2.270 3.215 2.270 2.596 2.890 2.596 2.890 -2.171 7.000
9 3.545 2.526 3.545 2.526 2.526 3.545 3.545 2.526 -2.677 8.000

10 3.919 2.693 3.919 2.693 3.206 3.407 2.831 3.783 -3.195 9.000
11 3.867 3.252 3.444 3.677 3.444 3.677 2.710 4.412 -3.720 10.000
12 5.215 2.430 4.506 3.140 3.760 3.887 3.303 4.345 -4.252 11.000
13 5.630 2.513 5.630 2.513 4.038 4.105 4.397 3.746 -4.788 12.000
14 5.852 2.768 4.853 3.769 4.280 4.342 3.783 4.839 -5.327 13.000
15 5.786 3.301 5.126 3.962 4.618 4.470 3.625 5.465 -5.870 14.000
16 7.140 2.419 5.530 4.030 4.778 4.782 4.400 5.161 -6.415 15.000
17 7.602 2.419 6.451 3.570 5.004 5.018 4.840 5.182 -6.962 16.000
18 7.751 2.725 7.751 2.725 5.262 5.215 4.923 5.554 -7.511 17.000
19 7.682 3.245 7.682 3.245 5.469 5.459 4.536 6.393 -8.062 18.000
20 9.040 2.339 9.040 2.339 5.660 5.720 5.296 6.084 -8.614 19.000
21 9.532 2.296 9.532 2.296 5.883 5.945 6.123 5.705 -9.168 20.000
22 9.638 2.635 9.638 2.635 6.133 6.141 5.799 6.475 -9.723 21.000
23 9.570 3.148 9.570 3.148 6.362 6.357 5.438 7.280 -10.279 22.000
24 10.930 2.232 10.930 2.232 6.565 6.597 6.202 6.960 -10.837 23.000

med 5.423 2.424 4.679 2.581 3.899 3.996 3.585 4.378 -4.520 11.500
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Table 4: Orthogonal Scalets Time-Domain Regularity tdr(A).

K DCOMR DROMR DCOMN DROLU DCOLU DCOLN DROMA DROLA

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550
3 1.000 1.088 1.000 1.088 1.000 1.000 1.088 1.088
4 1.453 1.618 1.453 1.403 1.453 1.453 1.618 1.403
5 1.828 1.969 1.828 1.776 1.789 1.789 1.969 1.776
6 2.210 2.244 2.210 2.122 2.155 2.155 2.189 2.122
7 2.537 2.579 2.537 2.485 2.449 2.449 2.460 2.468
8 2.870 2.849 2.870 2.750 2.768 2.768 2.761 2.750
9 3.161 3.123 3.161 3.039 3.039 3.039 3.074 3.039

10 3.411 3.381 3.396 3.313 3.325 3.325 3.381 3.311
11 3.638 3.626 3.613 3.588 3.576 3.574 3.603 3.579
12 3.876 3.866 3.853 3.827 3.836 3.834 3.833 3.826
13 4.106 4.101 4.081 4.098 4.074 4.075 4.073 4.072
14 4.337 4.334 4.320 4.313 4.318 4.316 4.317 4.312
15 4.565 4.563 4.549 4.552 4.549 4.549 4.558 4.550
16 4.793 4.792 4.784 4.789 4.783 4.784 4.791 4.781
17 5.019 5.019 5.012 5.016 5.011 5.011 5.014 5.011
18 5.245 5.244 5.241 5.243 5.240 5.240 5.239 5.239
19 5.469 5.469 5.467 5.466 5.465 5.465 5.465 5.465
20 5.693 5.693 5.693 5.692 5.691 5.691 5.691 5.690
21 5.916 5.916 5.916 5.915 5.914 5.914 5.916 5.914
22 6.139 6.139 6.138 6.138 6.137 6.137 6.138 6.137
23 6.360 6.360 6.360 6.360 6.359 6.359 6.360 6.359
24 6.582 6.582 6.581 6.582 6.581 6.581 6.581 6.581

med 3.991 3.984 3.967 3.963 3.955 3.954 3.953 3.949
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Table 5: Biorthogonal Scalets Time-Frequency Uncertainty tfu(a0) and tfu(s0).

K DRBSS DRBMS DRBBR DRBMR DRBLU
a0 s0 a0 s0 a0 s0 a0 s0 a0 s0

1 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568
2 0.703 0.513 0.703 0.513 0.703 0.513 0.703 0.513 0.703 0.513
3 0.973 0.505 0.973 0.505 0.973 0.505 0.973 0.505 0.973 0.505
4 1.322 0.503 0.682 0.608 0.682 0.608 0.682 0.608 0.682 0.608
5 1.714 0.502 0.551 0.888 0.888 0.551 0.551 0.888 0.551 0.888
6 2.119 0.501 0.674 0.718 0.674 0.718 0.674 0.718 0.674 0.718
7 2.516 0.501 0.801 0.774 0.801 0.774 0.801 0.774 0.801 0.774
8 2.894 0.501 0.667 0.820 0.667 0.820 0.626 1.134 0.626 1.134
9 3.248 0.501 0.567 1.054 1.054 0.567 0.567 1.054 0.567 1.054

10 3.579 0.500 0.771 0.761 0.663 0.914 0.611 1.321 0.611 1.321
11 3.890 0.500 0.891 0.757 0.709 1.167 0.719 1.390 0.709 1.167
12 4.183 0.500 0.805 0.793 0.659 1.000 0.631 1.797 0.593 1.475
13 4.461 0.500 0.631 1.111 0.992 0.731 0.548 1.855 0.548 1.855
14 4.725 0.500 0.826 0.829 0.656 1.080 0.603 1.992 0.576 1.529
15 4.978 0.500 0.916 0.818 0.654 1.472 0.659 2.023 0.649 1.767
16 5.221 0.500 0.788 0.915 0.653 1.154 0.577 2.374 0.568 1.735
17 5.455 0.500 1.138 0.713 1.075 0.779 0.540 2.510 0.532 2.067
18 5.681 0.500 0.780 0.976 0.651 1.225 0.556 2.554 0.556 2.554
19 5.900 0.500 0.924 0.890 0.623 1.649 0.574 2.553 0.574 2.553
20 6.112 0.500 0.825 0.970 0.714 1.141 0.532 2.847 0.532 2.847
21 6.318 0.500 0.728 1.220 0.854 1.058 0.519 3.011 0.519 3.011
22 6.518 0.500 0.818 1.023 0.687 1.645 0.522 3.012 0.522 3.012
23 6.713 0.500 0.928 0.964 0.693 1.510 0.527 2.995 0.527 2.995
24 6.903 0.500 0.847 1.032 1.159 1.120 0.512 3.251 0.512 3.251

med 4.322 0.500 0.795 0.825 0.690 0.957 0.576 1.826 0.571 1.502
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Table 6: Orthogonal Scalets Time-Frequency Uncertainty tfu(a0).

K DCOMN DCOMR DROMA DROMR DCOLN DCOLU DROLA DROLU

1 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568
2 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592
3 0.680 0.680 0.669 0.669 0.680 0.680 0.669 0.669
4 0.829 0.829 0.755 0.755 0.829 0.829 0.635 0.635
5 1.054 1.054 0.843 0.843 0.776 0.776 0.718 0.718
6 1.270 1.270 0.931 0.734 0.802 0.802 0.694 0.694
7 1.539 1.539 1.019 1.036 0.743 0.743 0.766 0.713
8 1.785 1.785 1.106 0.778 0.796 0.796 0.748 0.748
9 2.070 2.070 1.192 0.838 0.785 0.785 0.795 0.795

10 2.332 1.944 1.278 1.278 0.835 0.835 0.795 0.765
11 2.625 1.915 1.363 1.053 0.836 0.816 0.915 0.779
12 2.896 1.879 1.447 0.911 0.903 0.869 0.838 0.800
13 3.194 1.654 1.530 0.910 0.896 0.850 0.853 0.847
14 3.471 1.741 1.613 1.228 0.923 0.894 0.853 0.830
15 3.771 1.590 1.696 1.062 0.885 0.875 0.962 0.841
16 4.053 1.888 1.778 0.961 0.973 0.917 0.882 0.853
17 4.355 1.575 1.859 0.923 0.898 0.894 0.923 0.877
18 4.640 1.556 1.940 1.604 0.998 0.938 0.909 0.873
19 4.943 1.898 2.021 1.147 0.916 0.916 1.017 0.879
20 5.231 1.761 2.101 1.591 0.980 0.958 0.909 0.895
21 5.535 1.587 2.181 0.969 0.945 0.938 0.951 0.912
22 5.825 1.525 2.261 1.470 0.999 0.978 0.929 0.915
23 6.130 1.678 2.340 1.108 0.970 0.959 1.093 0.921
24 6.422 1.511 2.420 2.774 1.025 1.002 0.950 0.934

med 3.045 1.589 1.488 0.965 0.890 0.859 0.853 0.815
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Table 7: Biorthogonal Scalets Frequency-Domain Selectivity fds(a0) and fds(s0).

K DRBMS DRBBR DRBLU DRBMR DRBSS
a0 s0 a0 s0 a0 s0 a0 s0 a0 s0

1 0.528 0.528 0.528 0.528 0.528 0.528 0.528 0.528 0.528 0.528
2 0.501 0.637 0.501 0.637 0.501 0.637 0.501 0.637 0.501 0.637
3 0.206 0.651 0.206 0.651 0.206 0.651 0.206 0.651 0.206 0.651
4 0.695 0.760 0.695 0.760 0.695 0.760 0.695 0.760 -0.186 0.636
5 0.634 0.487 0.487 0.634 0.634 0.487 0.634 0.487 -0.717 0.611
6 0.712 0.769 0.712 0.769 0.712 0.769 0.712 0.769 -1.439 0.583
7 0.649 0.729 0.649 0.729 0.649 0.729 0.649 0.729 -2.433 0.555
8 0.720 0.755 0.720 0.755 0.566 0.287 0.566 0.287 -3.812 0.530
9 0.713 0.607 0.607 0.713 0.713 0.607 0.713 0.607 -5.739 0.506

10 0.786 0.814 0.725 0.737 0.557 0.145 0.557 0.145 -8.450 0.484
11 0.772 0.836 0.584 0.426 0.584 0.426 0.498 -0.023 -12.288 0.465
12 0.783 0.809 0.728 0.720 0.559 0.073 0.436 -1.019 -17.751 0.447
13 0.790 0.759 0.793 0.771 0.521 -0.513 0.521 -0.513 -25.568 0.431
14 0.792 0.817 0.730 0.704 0.610 0.247 0.430 -1.322 -36.801 0.417
15 0.825 0.876 0.572 0.233 0.482 -0.410 0.387 -1.730 -53.010 0.403
16 0.838 0.871 0.732 0.690 0.573 0.014 0.348 -3.830 -76.482 0.391
17 0.810 0.806 0.793 0.767 0.574 -0.275 0.402 -2.960 -110.586 0.380
18 0.835 0.863 0.733 0.677 0.346 -4.499 0.346 -4.499 -160.286 0.370
19 0.844 0.889 0.621 0.325 0.316 -5.421 0.316 -5.421 -232.913 0.360
20 0.853 0.882 0.729 0.688 0.291 -10.016 0.291 -10.016 -339.306 0.351
21 0.826 0.821 0.788 0.806 0.328 -8.428 0.328 -8.428 -495.518 0.343
22 0.855 0.880 0.744 0.691 0.291 -11.529 0.291 -11.529 -725.358 0.335
23 0.851 0.892 0.580 0.241 0.269 -13.599 0.269 -13.599 -1064.177 0.328
24 0.864 0.890 0.616 0.442 0.253 -23.922 0.253 -23.922 -1564.530 0.321

med 0.788 0.812 0.703 0.691 0.542 0.109 0.433 -0.766 -21.660 0.439
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Table 8: Orthogonal Scalets Phase NonLinearity pnl(A).

K DCOMN DROMA DCOMR DROMR DROLU DCOLU DCOLN DROLA

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.081 1.081 1.081 1.081 1.081 1.081 1.081 1.081
3 2.670 2.300 2.670 2.300 2.300 2.670 2.670 2.300
4 4.607 3.578 4.119 3.578 0.914 4.119 4.119 0.914
5 6.810 4.889 6.810 4.889 0.564 3.381 3.381 0.564
6 8.974 6.220 8.974 3.359 0.849 2.863 2.863 0.849
7 11.295 7.566 11.295 3.555 2.237 1.364 1.364 1.841
8 13.605 8.922 13.216 3.697 0.863 1.755 1.313 0.863
9 15.931 10.287 15.931 4.304 0.590 0.619 0.619 0.590

10 18.328 11.659 14.791 11.659 0.988 1.341 1.341 0.897
11 20.648 13.036 14.043 3.562 2.184 1.077 0.998 1.864
12 23.105 14.417 13.495 4.106 1.020 1.876 1.754 0.937
13 25.418 15.802 11.334 4.181 4.532 1.552 0.926 0.322
14 27.915 17.190 12.445 11.844 1.028 1.769 1.568 0.860
15 30.222 18.581 10.539 3.492 2.144 0.949 0.756 1.795
16 32.751 19.974 13.772 4.172 3.600 1.832 1.380 0.861
17 35.053 21.370 9.982 4.345 4.830 1.220 0.538 0.335
18 37.606 22.767 8.076 19.597 3.530 1.494 1.392 0.868
19 39.903 24.166 14.231 12.007 2.291 0.605 0.605 1.782
20 42.474 25.567 11.997 19.813 3.525 1.566 1.405 0.847
21 44.767 26.969 5.001 4.464 4.896 1.025 0.305 0.304
22 47.355 28.372 6.120 4.968 3.529 1.536 1.402 0.854
23 49.644 29.776 11.116 12.160 2.286 0.688 0.511 1.795
24 52.244 31.182 6.254 27.242 3.674 1.451 1.408 0.849

med 24.261 15.109 10.827 4.243 2.210 1.472 1.352 0.862
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Table 9: Biorthogonal Wavelets Vanishing Moments Numbers vmn(a1) and vmn(s1).

K DRBMS DRBBR DRBLU DRBMR DRBSS
a1 s1 a1 s1 a1 s1 a1 s1 a1 s1

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13 13 13
14 14 14 14 14 14 14 14 14 14 14
15 15 15 15 15 15 15 15 15 15 11
16 16 16 16 16 16 16 16 16 16 12
17 17 16 17 17 17 17 16 17 14 10
18 17 16 16 16 15 17 15 17 14 10
19 17 15 16 15 16 16 16 16 14 10
20 16 15 15 15 14 16 14 16 14 10
21 15 15 15 15 13 16 13 16 12 9
22 15 14 15 14 13 16 13 16 12 9
23 15 13 14 15 13 15 13 15 12 8
24 14 13 14 13 12 15 12 15 11 8

med 13 13 13 13 12 13 12 13 12 9
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Table 10: Orthogonal Wavelets Vanishing Moments Numbers vmn(a1).

K DROLA DCOLN DROLU DCOLU DCOMR DROMR DCOMN DROMA

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13
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122 Roots of DRNSI(123;62;61): rce(C) = 2.5e−012, sre(C) = 4.4e−015
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Figure 1: Related Forms of Daubechies Polynomial PD(z) for D = 30.

Daubechies Real Nonorthogonal Symmetric Interpolating DRNSI(123;62;61)
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Figure 2: DRNSI(123;62;61) Filter Roots, Impulse Response, Frequency Response.
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Lagrange Real Nonorthogonal Symmetric Interpolating LRNSI(323;162;161)
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Figure 3: LRNSI(323;162;161) Filter Roots, Impulse Response, Frequency Response.

Daubechies Real Nonorthogonal Symmetric Interpolating DRNSI(323;162;161)
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Figure 4: DRNSI(323;162;161) Filter Roots, Impulse Response, Frequency Response.
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Figure 5: Lagrange and Daubechies Polynomial Root Errors.

Scalet, QMF Wavelet, CQF Wavelet with Parities
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Figure 6: DROMD(4;2) Scalet, QMF, CQF Wavelets with Alternate Parities.
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DCOLA(12;6) Phase NonLinearity pnl(F)
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Figure 7: DCOLA(12;6) Phase NonLinearity.

DCOMA(12;6) Phase NonLinearity pnl(F)
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Figure 8: DCOMA(12;6) Phase NonLinearity.
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Daubechies Complex Orthogonal Least Asymmetric DCOLA(12;6)
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Figure 9: DCOLA(12;6) Spectral Factorization.

Daubechies Real Biorthogonal Most Selective DRBMS(17,15;8,8)
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Figure 10: DRBMS(17,15;8,8) Spectral Factorization.
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Daubechies Real Orthogonal Examples
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Figure 11: Daubechies Real Orthogonal Examples.

Daubechies Complex Orthogonal Examples
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Figure 12: Daubechies Complex Orthogonal Examples.
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Daubechies Complex Orthogonal Least Nonlinear Analysis Scalets
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Figure 13: DCOLN Analysis Scalets.

Daubechies Complex Orthogonal Least Nonlinear Analysis Wavelets
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Figure 14: DCOLN Analysis Wavelets.
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Figure 15: Phase NonLinearity of Orthogonal Filters.
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Figure 16: Frequency-Domain Selectivity of Biorthogonal Filters.


