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ABSTRACT

Numerical methods are described for evaluating the time-
domain moments and regularity of multirate filter banks.
Estimates of the Holder regularity are computed for the con-
tinuous functions obtained from the iterated discrete filters.
Estimates of the centered moments are also computed for
both the discrete filters and continuous functions. These es-
timates are then used to obtain the vanishing moment num-
bers. None of the methods require any preprocessing of the
filters ora priori information about them. Thus, the methods
can serve as tests for the evaluation of arbitrary filter banks.
Results are presented for various examples.

1. INTRODUCTION

Discrete filters in multirate filter banks are often iterated
to approximations of continuous functions. Typically, pa-
rameters such as the moments and regularity of the discrete
filters and continous functions are studied in an effort to
obtain estimates of exact analytic values. However, in com-
putational settings, it would be more meaningful to obtain
estimates of iteration-dependent numeric values that better
reflect performance in an algorithm with a finite number of
iterations of the multirate filter bank.

This report describes new methods with significant ad-
vantages for evaluating the numerical behavior of the mo-
ments and regularity of iterated filters. Some of these meth-
ods were first used in Version 4.0a3 (12-Jan-1994) of the
WAVB3X Software Library [3] with results and algorithms
described in [4] and [5], respectively. However, they have
not yet been published in an archival journal or conference
proceedings. Thus, the methods are presented here with ex-
amples of results obtained for various multirate filter banks.

2. METHODS

Complete details for all methods described here are elab-
orated in further detail in [2]. Examples are demonstrated
for the DROLD(N ;K) and DROLA(N ;K) filter families
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[5] which haveN coefficients andK roots atz = −1. All
results reported here were computed with Version 4.5a2 (30-
Mar-1998) of theWAVB3X Software Library [3].

2.1. Iterated Filter Banks

Given theN × M filter bank matrixF with M band
filtersfm, letY(0) = F be the set of initial discrete impulses
with matrix Y ≡ [ynm] and column vectorsy(0)

m = fm for
m = 0, 1, . . . ,M − 1. Then let

y(j+1)
m [n] =

N−1∑
k=0

f0[k]y(j)
m [n−Mk] (1)

be the estimates approximating the continuous functions
ψm(tn) ≈ y

(J)
m [n] with discrete samples indexed byn at

continuous timestn = nM−J−1 afterJ iterations.

2.2. Time Domain Moments

Define theqth power weighted discrete and continous
time domain centers

cmq =

〈(
N−1∑
n=0

n|fm[n]|q
)
/

(
N−1∑
n=0

|fm[n]|q
)〉

(2)

γmq =
(∫

t|ψm(t)|q dt
)
/

(∫
|ψm(t)|q dt

)
(3)

where the discrete centercmq is integer, the continuous cen-
ter γmq is real, and〈·〉 in this context denotes rounding to
the nearest integer. IdentifyJ = 0 andJ > 0 with the
discrete and continous centers respectively for the filters and
functions, that is, identifyψm(tn) with y(J)

m [n] for J > 0
andfm[n] with y

(J)
m [n] for J = 0 as in Section 2.1, and

then estimatec(0)mq andγ(J)
mq numerically. With the weighted

centers, define thepth discrete and continous time domain
moments

kmpq =
N−1∑
n=0

(n− cmq)
pfm[n] (4)

κmpq =
∫

(t− γmq)
pψm(t) dt (5)



where bothkmpq andκmpq are real. Again, identifyJ = 0
andJ > 0 with the discrete and continous versions respec-
tively, and then estimatek(0)

mpq andκ(J)
mpq numerically. Nu-

merical integration for the integrals can be performed with
a simple quadrature rule such as the trapezoidal rule.

2.3. Vanishing Moments Numbers

For convenience, assume fixedq andJ forκ(J)
mpq and sup-

press the notation forq andJ . Now consider the numerically
observed vanishing moments number forfm to be the integer
νm obtained from the sequence of real{κmp|p = 0, 1, . . . }
using an absolute zero criterion

νm = min
p|χ=1

(p+ 1)χ(|κmp| > εabs) (6)

with toleranceεabs ≈ 0 such asεabs = 1 × 10−4, or using a
relative jump criterion

νm = min
p|χ=1

(p+ 1)χ(|κm,p+1/κm,p| > εrel) (7)

with toleranceεrel >> 1 such asεrel = 1 × 104, whereχ(·)
is a logical function returning the truth valueχ ∈ {0, 1} for
its expression argument. For bandpass or highpass filters,
all values ofp such thatχ = 1 are examined. However, for
lowpass filters, allp such thatχ = 1 excludingp = 0 are
examined as necessitated by the fact that the lowpass filter
must have a nonvanishing zeroth moment.

2.4. Time Domain Regularity

An iterative estimate of the time domain regularity can
be evaluated by applying to Rioul’s definition of Holder reg-
ularity for subdivision schemes [1] a general procedure for
determining the convergence order of a sequence of func-
tions. Assume an arbitrary continuous time functiony(t)
approximated at iterationsj and time pointstn = nhj by
y(j)[n]with error functione(j)[n] = y(tn)−y(j)[n]wheretn
is real,n is integer, andhj > 0 is realhj → 0 asj → ∞. Let
e(j)[n] = O(hq

j)ashj → 0mean that there exist constantsC

andh0 such that|e(j)[n]| ≤ Chq
j , ∀n, ∀hj ≤ h0. Evaluate

e(j)[n] for the sequencehj = h0/c
j for j ≥ 1 wherec > 1

is a constant taken asc = M . Defineej = maxn |e(j)[n]|
so thatej ≤ Chq

j andej+1 ≤ Chq
j+1. Derive

ej

ej+1
≈ Chq

j

Chq
j+1

=
(h0/c

j)q

(h0/cj+1)q
= cq (8)

for which we can estimate

qj =
log(ej/ej+1)

log(c)
(9)

with ideally q = limj→∞ qj .

To account for convergence that is nonmonotonic, use
smoothers such as the median as well as the lower and upper
bounds to define the estimates

q
j

= min{qi | i = j0, j0 + 1, . . . , j} (10)

q̂j = med{qi | i = j0, j0 + 1, . . . , j} (11)

qj = max{qi | i = j0, j0 + 1, . . . , j} (12)

that provide checks on the behavior of the convergence.1

AfterJ iterations, obtain the final estimateq̂J bounded below
by q

J
and above byqJ . The number of iterationsJ can be

determined by a convergence criterion such as

|q̂j − q̂j−1| < ε (13)

for some absolute error toleranceε or elseJ can be fixed by
a predetermined value. This approach provides an iterative
method to estimate the convergence orderq without assum-
ing its valuea priori and without knowing the constantC.

Now let∆p be the finite difference operator of orderp.
Assume fory(t) the regularityρ = p+ q with integerp and
realq. Then use the method described above to estimateq
in the sequence

ej = max
n

|∆py(j)[n]|/hp
j ≤ hq

j (14)

by testing iteratesy(j)[n] with an appropriate knownp. An
effective algorithm can be implemented as a search forpk

over k = 1, 2, . . . where for eachpk a cycle of iterations
over j = 0, 1, . . . , Jk is performed. Equation 13 provides
a test of convergence of̂qj which determinesJk for a given
cycle withpk at iterationk. Now let

ρk = pk + q̂Jk
(15)

denote thekth regularity estimate. Values forpk+1 can be
set from those forpk by the recursion

pk+1 =
{
pk + 1 if dρke + 1 > pk

pk − 1 if dρke + 1 < pk
(16)

with initializationp1 = 2 and termination if

dρke + 1 = pk (17)

or if k exceeds a predetermined number of iterations.
For an experiment comparing these estimates with those

of Rioul, let rlb(·) and rub(·) denote respectively his iterative
estimate for the lower bound [1, eqn.11.1] and noniterative
estimate for the upper bound [1, eqn.13.1]. Both of his esti-
mates require that the filter roots atz = −1 be deconvolved
prior to estimation of the filter’s regularity. Thus, for the
comparison experiment, letf andg be corresponding exact
filters (both vectors of coefficients constructed exactly from
known roots) with and without the roots atz = −1, respec-
tively. Let ĝ be the filterg estimated fromf by testing for
and deconvolving an unknown number of roots atz = −1.

1The bounds are computed forj ≥ j0 to allow for initialization tran-
sients, for example withj0 = 2.



3. RESULTS

Table 1 lists regularity estimates obtained withJ ≤ 5
for the DROLD(N ;K) family of filters. All of the estimates
ρ(f) ≤ ρ̂(f) ≤ ρ(f) remain stable for2 ≤ K ≤ 24. In
contrast, both of the estimates rlb(ĝ) ≤ rub(̂g) require pre-
processing to obtain̂g from f and they become unstable
for 21 ≤ K ≤ 24. Moreover, the iterativeρ(f) converges
faster to tighter lower bounds and outperforms the iterative
rlb(ĝ) for all 2 ≤ K ≤ 24. Although the noniterative rub(g)
remains stable for2 ≤ K ≤ 24, it does requirea priori
knowledge ofg and thus cannot be applied to an arbitrary
unknown filterf . See [2] for examples demonstratingρ̂ for
bandpass and highpass filters.

Figures 1, 2, and 3 display respectively theq = 2 cen-
tered time-domain moments and vanishing moment num-
bers atJ = 0 and J = 2 for the DROLA(32;16) filter
bank. In Figure 1 with|κmp| as a function ofp (scalets
f0 on left, waveletsf1 on right), the discrete moments (top
curve in each subfigure) forfm are clearly distinct from the
iterative estimates of the continuous moments forfm with
j = 1, 2, 3. In Figures 3 and 4 for the vanishing moment
numbers for the scalets and wavelets atJ = 2, using the
absolute zero criterion (left subfigure in each),ν = [0, 12]
was observed for DROLD(32;16) whileν = [0, 16] was ob-
served for DROLA(32;16), but[0, 16] was expected for both.
However, using the relative jump criterion (right subfigure
in each),ν = [0, 16] was observed for both as expected.

4. DISCUSSION

Numerical methods have been presented for estimating
time-domain centers, moments, vanishing moment numbers,
and regularity of all filters in a filter bank. The methods do
not need to be restricted to the lowpass filter only. Nor do
they require preprocessing of the filter ora priori information
about the filter. Thus, they are applicable to the evaluation of
arbitrary multirate filter banks. Examples of results in addi-
tion to those reported here can be found in [2] for a variety of
M -band filter banks withM ≥ 2. For the determination of
the vanishing moment numbers, the relative jump criterion
was found to reveal the expected result in situations where
the absolute zero criterion did not. However, it is the esti-
mate obtained with the absolute zero criterion that reflects
the actual number ofeffectivevanishing moments impacting
the numerical computing application in practice. For the de-
termination of the regularity, the iterative method presented
here does not insure monotonic convergence. However, it
does provide faster convergence than the iterative method
described by Rioul [1]. Moreover, it has the significant ad-
vantage that the roots atz = −1 do not need to be decon-
volved prior to evaluation of the regularity estimate.
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Table 1: Time-domain regularity for DROLD(N ;K)

K rlb(ĝ) rub(g) rub(̂g) ρ(f) ρ̂(f) ρ(f)
2 0.400 0.550 0.550 0.550 0.550 0.550
3 0.887 1.088 1.088 1.078 1.089 1.105
4 1.312 1.618 1.618 1.481 1.608 1.663
5 1.457 1.969 1.969 1.834 1.954 2.102
6 1.527 2.189 2.189 2.132 2.184 2.201
7 1.658 2.460 2.460 2.326 2.485 2.814
8 1.819 2.761 2.761 2.732 2.836 2.968
9 1.933 3.074 3.074 2.816 3.131 3.422

10 2.039 3.381 3.381 3.254 3.363 3.474
11 2.128 3.603 3.603 3.086 3.610 3.901
12 2.194 3.833 3.833 3.656 3.773 4.095
13 2.267 4.073 4.073 3.574 3.952 4.503
14 2.342 4.317 4.317 4.083 4.309 4.723
15 2.413 4.558 4.558 4.417 4.466 4.486
16 2.473 4.791 4.791 4.575 4.801 4.905
17 2.536 5.014 5.014 4.629 4.978 5.069
18 2.599 5.239 5.240 4.911 5.197 5.649
19 2.628 5.465 5.441 5.357 5.450 5.981
20 2.796 5.691 5.759 5.401 5.573 6.286
21 -5.093 5.916 -0.638 5.833 5.960 6.199
22 5.982 6.138 8.767 5.952 6.167 6.269
23 3.161 6.360 6.592 6.269 6.495 6.766
24 10.185 6.581 12.622 6.362 6.638 7.208



DROLA(32;16) Time Domain Moments tdm(F) for J = [0,1,2,3]
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Figure 1: Time domain moments for DROLA(32;16).

DROLA(32;16) Vanishing Moments Number vmn(F) for J = 0
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Figure 2: Vanishing moment numbers atJ = 0 for DROLA(32;16).

DROLA(32;16) Vanishing Moments Number vmn(F) for J = 2
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Figure 3: Vanishing moment numbers atJ = 2 for DROLA(32;16).

DROLD(32;16) Vanishing Moments Number vmn(F) for J = 2
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Figure 4: Vanishing moment numbers atJ = 2 for DROLD(32;16).


