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ABSTRACT [5] which haveN coefficients and¥ roots atz = —1. All
results reported here were computed with Version 4.5a2 (30-

Numerical methods are described for evaluating the t'me'Mar-1998) of the/BX Software Library [3].

domain moments and regularity of multirate filter banks.
Estimates of the Holder regularity are computed for the con- )
tinuous functions obtained from the iterated discrete filters. 2-1- lterated Filter Banks

Estimates of the centered moments are also computed for  Gjven the N x M filter bank matrixF with A/ band
both the discrete filters and continuous functions. These estiltersf,,, letY(©) = F be the set of initial discrete impulses

timates are then used to obtain the vanishing moment num- with matrix Y = [y,.,n] and column vectoryfg) — £, for

bers. None of the methods require any preprocessing of the —0,1,...,M—1. Then let
filters ora priori information about them. Thus, the methods
can serve as tests for the evaluation of arbitrary filter banks.
Results are presented for various examples. v Z folkly In — ME] @)
1. INTRODUCTION be the estimates approximating the continuous functions

Ui (tn) =~ yﬁ,‘f)[ ] with discrete samples indexed hyat
Discrete filters in multirate filter banks are often iterated continuous times,, = nM —/~! after.J iterations.

to approximations of continuous functions. Typically, pa-

r_ameters such as the mom_ents and regu_larlty of the d|scretez_2. Time Domain Moments

filters and continous functions are studied in an effort to

obtain estimates of exact analytic values. However, in com-  Define theq'" power weighted discrete and continous
putational settings, it would be more meaningful to obtain time domain centers

estimates of iteration-dependent numeric values that better N1

reflect performance in an algorithm with a finite number of . _ n 2

iterations of the multirate filter bank. e nzo [fnlm Z [ fonlrl @
This report describes new methods with significant ad-

vantages for evaluating the numerical behavior of the mo-  V,, = ( / b ()| dt) ( / [t (£)]7 dt) 3)

ments and regularity of iterated filters. Some of these meth-

ods were first used in Version 4.0a3 (12-Jan-1994) of thewhere the discrete centey,,, is integer, the continuous cen-
WYBX Software Library [3] with results and algorithms  ter v,,,, is real, and-) in this context denotes rounding to
described in [4] and [5], respectively. However, they have the nearest integer. Identiff = 0 andJ > 0 with the

not yet been published in an archival journal or conference discrete and continous centers respectively for the filters and
proceedings. Thus, the methods are presented here with eXynctions, that is, identify),,, (t,) with yU)[ ] for J > 0
amples of results obtained for various multirate filter banks. ;4 Fln] W|th y(J)[ ] for J = 0 as in Section 2.1, and

then estlmatemq andy numerically. With the weighted

2. METHODS centers, define thg™® d|screte and continous time domain
moments
Complete details for all methods described here are elab-
orated in further detail in [2]. Examples are demonstrated I _ Ni:l(n C e VP fnl] @)
for the DROLD(V; K) and DROLA(V; K) filter families mpqg — mgq/ S
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where bothk,,,,, andx,,, are real. Again, identify/ = 0

andJ > 0 with the discrete and continous versions respec-

tively, and then estima (Oz),q andn%q numerically. Nu-

merical integration for the integrals can be performed with
a simple quadrature rule such as the trapezoidal rule.

2.3. Vanishing Moments Numbers

For convenience, assume fixgdnd.J for nﬁ,f;q and sup-

press the notation fgrand.J. Now consider the numerically
observed vanishing moments numberfigtto be the integer
v,, obtained from the sequence of réal,, [p =0,1,...}
using an absolute zero criterion

Vm

= min (p + 1)X(|Hmp| > eabs) (6)

plx=1
with tolerancer s ~ 0 such as,,s = 1 x 10~%, or using a
relative jump criterion

@)

VU = pI‘I;(i:Hl(p + 1)X(|I€’m,p+1/"€m,p| > €rel)

with tolerancer,; >> 1such as,. = 1 x 10%, wherey(-)
is a logical function returning the truth valgee {0, 1} for

its expression argument. For bandpass or highpass filters

all values ofp such thaty = 1 are examined. However, for
lowpass filters, alp such thaty = 1 excludingp = 0 are

examined as necessitated by the fact that the lowpass filte

must have a nonvanishing zeroth moment.

2.4. Time Domain Regularity

An iterative estimate of the time domain regularity can
be evaluated by applying to Rioul’s definition of Holder reg-

To account for convergence that is nonmonotonic, use
smoothers such as the median as well as the lower and upper
bounds to define the estimates

gj = min{qi | 'L.:j07j0+17"' 7]} (10)
7 = max{¢; | i =Jo,jo+1,...,5} (12)

that provide checks on the behavior of the convergénce.
After J iterations, obtain the final estimatgbounded below
by ¢, and above by];. The number of iterationg can be
determined by a convergence criterion such as

|qj — qj—1] <e (13)
for some absolute error tolerancer elseJ can be fixed by
a predetermined value. This approach provides an iterative
method to estimate the convergence orgetithout assum-
ing its valuea priori and without knowing the constaat.
Now let AP be the finite difference operator of order
Assume fory(t) the regularityp = p + ¢ with integerp and

realg. Then use the method described above to estigpate
in the sequence

e; = max APy [n]| /] < hf (14)
by testing iterateg(’) [n] with an appropriate knowp. An
effective algorithm can be implemented as a searchpfor
roverk = 1,2,... where for eachp;, a cycle of iterations
overj =0,1,...,J; is performed. Equation 13 provides
a test of convergence gf which determineg, for a given

cycle withpy, at iterationk. Now let
Pr =Pk + d]k (15)

denote thé:'" regularity estimate. Values for,; can be

ularity for subdivision schemes [1] a general procedure for Set from those fop,. by the recursion

determining the convergence order of a sequence of func-

tions. Assume an arbitrary continuous time functig(n)
approximated at iterationsand time pointg,, = nh; by
y) [n] with error functiore?) [n] = y(t,,)—yY) [n] wheret,,
isreal,nisinteger,and,; > Oisrealh; — 0asj — oo. Let
eW[n] = O(h?) ash; — 0 meanthatthere exist constafits
andhg such thate?) [n]| < Chi, Vn, Vh; < ho. Evaluate
eW[n] for the sequenck; = hy/c’ for j > 1 wherec > 1
is a constant taken as= M. Definee; = max,, |e)[n]|
so thate; < Chj. ande;j;q < Chgﬂ. Derive

€ C’h;l. _ (ho/e)r
ej1 Chiy, — (hofcit)s

®)

for which we can estimate

_ log(e/ej1)

T log(c) ©)

with ideally ¢ = lim;_, o g¢;.

pr+ 1 0f [p ] +1>ps
= . 16
P+l {m—llW%H4<m (16)
with initializationp; = 2 and termination if
[p] +1=pr (17)

or if k exceeds a predetermined number of iterations.

For an experiment comparing these estimates with those
of Rioul, letrlb(-) and rulf-) denote respectively his iterative
estimate for the lower bound [1, eqn.11.1] and noniterative
estimate for the upper bound [1, egn.13.1]. Both of his esti-
mates require that the filter rootsat —1 be deconvolved
prior to estimation of the filter's regularity. Thus, for the
comparison experiment, I€tandg be corresponding exact
filters (both vectors of coefficients constructed exactly from
known roots) with and without the roots at= —1, respec-
tively. Let g be the filterg estimated fronf by testing for
and deconvolving an unknown number of rootg at —1.

1The bounds are computed for> jo to allow for initialization tran-
sients, for example withip = 2.
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knowledge ofg and thus cannot be applied to an arbitrary com, 1993-98.

unknown filterf. See [2] for examples demonstratipdor

bandpass and highpass filters. [4]
Figures 1, 2, and 3 display respectively the- 2 cen-

tered time-domain moments and vanishing moment num-

bers at/ = 0 andJ = 2 for the DROLA(32;16) filter

bank. In Figure 1 withs,,,| as a function ofp (scalets

fo on left, waveletdf; on right), the discrete moments (top [5] C. Taswell. The Systematized Collection of Wavelet

C. Taswell. Algorithms for the generation of Daubechies
orthogonal least asymmetric wavelets and the computa-
tion of their Holder regularity. Technical report, Scien-
tific Computing and Computational Mathematics, Stan-
ford University, Aug. 1995.

curve in each subfigure) fdy, are clearly distinct from the Filters Computable by Spectral Factorization of the
iterative estimates of the continuous momentsffprwith Daubechies Polynomial Computational Toolsmiths,
j = 1,2,3. In Figures 3 and 4 for the vanishing moment www.toolsmiths.com  , 1997.

numbers for the scalets and wavelets/at 2, using the
absolute zero criterion (left subfigure in each)= [0, 12]
was observed for DROLD(32;16) while= [0, 16] was ob-
served for DROLA(32;16), bu6, 16] was expected for both.
However, using the relative jump criterion (right subfigure
in each) = [0, 16] was observed for both as expected.

Table 1: Time-domain regularity for DROLDV; K)

rb(g) rub) rub@®) | p(f) pf)  p(f)
0.400 0.550 0.550 0.550 0.550 0.550
0.887 1.088 1.088 1.078 1.089 1.105
1.312 1618 1.61§ 1.481 1.608 1.663
1457 1969 1.969 1.834 1.954 2.102
1527 2189 2189 2.132 2.184 2.201
1.658 2.460 2.460 2.326 2.485 2.814

4. DISCUSSION

Numerical methods have been presented for estimating
time-domain centers, moments, vanishing moment numbers,
and regularity of all filters in a filter bank. The methods do 1.819 2761 2.761 2.732 2.836 2.968
not need to be restricted to the lowpass filter only. Nor do 1933 3.074 3.074 2.816 3.131 3.422
they require preprocessing of the filteleguriori information 10| 2.039 3.381 3.38]1 3.254 3.363 3.474
about the filter. Thus, they are applicable to the evaluationof 11 | 2.128 3.603  3.603 3.086 3.610 3.901
arbitrary multirate filter banks. Examples of results in addi- 12 | 2.194 3.833  3.833 3.656 3.773 4.095
tion to those reported here can be found in [2] for avariety of 13 | 2.267 4.073  4.073 3.574 3.952 4.503
M-band filter banks with\/ > 2. For the determination of 14| 2.342 4317 4317 4.083 4.309 4.723
the vanishing moment numbers, the relative jump criterion 15| 2.413  4.558  4.558 4.417 4.466 4.486
was found to reveal the expected result in situations where 16 | 2.473 4791  4.791 4575 4.801 4.905
the absolute zero criterion did not. However, it is the esti- 17 | 2.536 5.014  5.014 4.629 4.978 5.069
mate obtained with the absolute zero criterion that reflects 18 | 2.599  5.239  5.240 4.911 5.197 5.649
the actual number afffectivevanishing moments impacting 19 | 2.628 5465  5.441 5357 5.450 5.981
the numerical computing application in practice. Forthede- 20 | 2.796 5.691  5.759 5401 5.573 6.286
termination of the regularity, the iterative method presented 21 | -5.093 5916 -0.63§ 5.833 5.960 6.199
here does not insure monotonic convergence. However, it 22 | 5.982 6.138  8.767 5.952 6.167 6.269
does provide faster convergence than the iterative method 23 | 3.161 6.360 6.592 6.269 6.495 6.766
described by Rioul [1]. Moreover, it has the significant ad- 24 | 10.185 6.581 12.622 6.362 6.638 7.208
vantage that the roots at= —1 do not need to be decon-
volved prior to evaluation of the regularity estimate.
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Figure 1: Time domain moments for DROLA(32;16).
DROLA(32;16) VVanishing Moments Number vimn(F) for 3 = O
vmn(F) = [0,13] vmn(F) = [0,16]
10" —
% 10° -
E = i
E 10° |- -
o =3 10 is 20 25 30 o 5 10 is 20 25 30 ]
Figure 2: Vanishing moment numbersat= 0 for DROLA(32;16).
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Figure 3: Vanishing moment numbersjat= 2 for DROLA(32;16).
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Figure 4: Vanishing moment numbersat= 2 for DROLD(32;16).



